County of Santa Cruz

Water Advisory Commission

701 Ocean Street, Room 312, Santa Cruz, CA 95060 (831) 454-2022 TDD/TTY -Call 711 www.scceh.com EnvironmentalHealth@santacruzcounty.us

AGENDA

SANTA CRUZ COUNTY WATER ADVISORY COMMISSION Wednesday December 3, 2025, 4pm

This meeting will be held in hybrid format. Commissioners are expected to attend in person.

In-Person: 701 Ocean Street; 5th Floor Redwood Room

Remote via Teams: Join the meeting now

Meeting ID: 279 260 926 173 27 Passcode: Rh9h4tz9

Dial in by phone +1 831-454-2222 Phone conference ID: 234 666 628#

A. **OPENING**

1. Call to Order

2. Roll Call.

B. PUBLIC COMMUNICATIONS

Opportunity for the public to comment on items under the purview of the Water Advisory Commission but not on today's agenda.

C. CONSENT AGENDA

Items on the consent agenda are considered to be routine in nature and will be acted upon in one motion. Specific items may be removed by members of the advisory body or public for separate consideration and discussion. Routine items that will be found on the consent agenda are meeting minutes, drought response updates, and Groundwater Sustainability Agency updates.

- 1. Approval of Meeting Minutes for October 1, 2025
- 2. Update from Groundwater Sustainability Agencies
- 3. Drought Response Updates

D. COMMISSIONERS' REPORTS

Opportunity for Commissioners to provide brief updates

E. STAFF REPORTS AND ANNOUNCEMENTS

Opportunity for staff to provide brief updates

F. NEW BUSINESS

1. <u>New County Well Database</u>

Kevin Harmon will present the County's approach to updating and modernizing the geodatabase of wells that the County maintains. The new approach uses AI technology to read and extract data from the collection of well completion reports stored by the County and the Department of Water Resources.

Attachments: Draft Well Layer Update Methodology Report and Appendix.

2. <u>2025 Water Status Report</u>

Review and provide comments on the 2025 Water Status Report update.

Attachments: Draft 2025 Water Status Report

G. UNFINISHED BUSINESS and UPDATES

None

H. CORRESPONDENCE

None

I. BOARD OF SUPERVISORS ACTION ON ITEMS AFFECTING WATER:

October 21, 2025, Items 9 and 10 regarding Measure Q Vision Plan and Funding Allocations.

J. ITEMS OF INTEREST

<u>Big Basin Water Co. operations have stabilized, but long-term ownership remains elusive.</u> Santa Cruz Sentinel, November 18 2025.

<u>Loch Lomond reservoir poised to spill after atmospheric river storm drenches Santa Cruz</u> County. Santa Cruz Sentinel, November 13, 2025

K. AGENDA ITEMS FOR FUTURE MEETINGS

Workplan

LAMP Updates

New Environmental Health Software (HS Gov Tech)

L. ADJOURNMENT

County of Santa Cruz

Water Advisory Commission

701 Ocean Street, Room 312, Santa Cruz, CA 95060 (831) 454-2022 TDD/TTY -Call 711 www.scceh.com EnvironmentalHealth@santacruzcounty.us

Meeting Minutes SANTA CRUZ COUNTY WATER ADVISORY COMMISSION Wednesday October 1, 2025, 4pm

In-Person: 701 Ocean Street; 5th Floor Redwood Room

A. OPENING

- 1. Call to Order
- 2. Roll Call. Welcome new Commissioner Sarah Easley Perez.

Commissioners in attendance: Cheap, Gillespie, Lockwood, Wilson, Perez

Commissioners absent with notification: Lego.

Staff in attendance: Sierra Ryan, Sean Abbey, David Reid, Clare Peabody

Commissioner Perez introduces herself to the Commission as the new District 5 Commissioner

B. **PUBLIC COMMUNICATIONS**

Opportunity for the public to comment on items under the purview of the Water Advisory Commission but not on today's agenda.

Becky Steinbruner expresses concern about battery storage. Dioxins and PFAS have been found by Blue Shirt Justice group on the Never Again Moss Landing website. She encourages the commission to comment on the 19 Minto road proposal. She says Central Water District wrote a letter in opposition to that project.

C. CONSENT AGENDA

Items on the consent agenda are considered to be routine in nature and will be acted upon in one motion. Specific items may be removed by members of the advisory body or public for separate consideration and discussion. Routine items that will be found on the consent agenda are meeting minutes, drought response updates, and Groundwater Sustainability Agency updates.

- 1. Approval of Meeting Minutes for August 6, 2025
- 2. Update from Groundwater Sustainability Agencies
- 1 Water Advisory Commission Minutes

3. Drought Response Updates

Moved by Lockwood with minor changes, seconded by Cheap. Perez abstained from item 1. Approved unanimously.

D. <u>COMMISSIONERS' REPORTS</u>

Opportunity for Commissioners to provide brief updates

Lockwood – Will be a flood MAR workshop hosted by DWR Nov 5 and 6. Some local folks like Mark Strudley will be presenting.

Gillespie – Scotts Valley Water (SVWD) and Santa Cruz Water have completed the pipeline on La Madrona for the Pipeline 1. They are working on the pump station at the top of La Madrona Drive next. Project is looking to wrap up in Spring of 2026. SVWD has drilled the Graceway well as a component of this project. They are moving on with the equipping phase now. Flow was tested at 500 GPM, but be able to reach 600. Depth is 970 feet.

E. STAFF REPORTS AND ANNOUNCEMENTS

Opportunity for staff to provide brief updates

- Water Resources staff have been interviewing the large water agencies to add that content to the Small Water System Interconnection and Consolidation Guidebook.
- On September 29th, Sierra attended one day of the CalMutuals meeting. She
 presented on the consolidation feasibility assessment, and guidebook development.
 Was invited to attend to panel with a person from LA County to discuss how counties
 can support small systems.
- Sierra will be presenting at Western Groundwater Congress on the Well Ordinance Update in early October

F. NEW BUSINESS

G. UNFINISHED BUSINESS and UPDATES

- Update on Measure Q Planning and Implementation
 Office or Response, Recovery, and Resiliency (OR3) Director David Reid will discuss the status of Measure Q, the Vision Plan, and the Grants program.
- 2 Water Advisory Commission Minutes

David Reid, Director of OR3 provided background on Measure Q. The Measure requires a Vision Plan, which is to be finalized on October 15th. The draft final Vision Plan will be reviewed and voted upon next week.

The Vision Plan covers 6 thematic areas of work being done in the County. Work in Water Resource Protection, Wildfire risk reduction, Parks, Coastal protections, agricultural and working lands protections, Wildlife and habitat protections.

Out of the 6 areas, grant making is being prioritized in three areas: Water Resource Protection, Wildflire and Forest Health, and Parks access. Other topics, particularly Wildlife habitat, were also brought up, but they felt that they were covered to a large extent by the work that would be done with Forest Health and Water. The Measure language also promotes leveraging additional funding such as state and federal grants, looking for multi-benefit projects, and equity. Other priorities include trying to be shovel ready. A lot of the conversations have been around the Vision Plan and Grant Program. The goal is to have the grant program Request for Proposals (RFP) out in late 2025 or early 2026. Still engaging stakeholders. The grant program will be iterative, it will not be perfect in year 1, but they can learn from recipients to improve it.

Stil determining things like how long the grant cycle should be. They want to get money out the door in early so taxpayers can see their dollars at work.

Cheap - Concerned that the Measure wants to be all things to all people, is the grant decision process public?

Director Reid - The two implementing agencies - Parks and OR3 - want a transparent process in terms of the applications and scoring criteria. It will be interesting to see how oversubscribed it is.

Gillespie – Doesn't seem like there is much of an avenue for the water districts to apply for those funds.

Director Reid – Horizontal infrastructure is expensive, only \$1.2 mill per year which is not a lot to do things at a utility scale. It seems unlikely that utility infrastructure projects will score high. There is nothing in the language that prohibits agencies applying for that fund. Things like fire hardening around facilities could get funding.

Lockwood – during the stakeholder engagement period they did a good job pulling in information. Definitely appreciated the opportunity to weigh in.

Director Reid – there is a collaborative opportunity to think of ways to leverage funds and collaborate. Hopefully we can get money out the door for good things.

Lockwood – The Department of Conservation has given money for multi-benefit land repurposing and the collaboration helped get the already planned projects implemented. Hope that it helps get more funding in the future under Prop 4. For smaller projects that could be the future of land repurposing, there could be good crossover with these grant funds.

Director Reid encourages the water district staff to engage with their cities as they also get allocated funding. Climate resilience could be a priority for the cities.

In terms of the cities, Santa Cruz is allocated some of their \$450k per year to hire two staff members. One parks maintenance worker and one urban forester that will do urban forestry and watershed lands work. Because of the budget cycle, the other cities should have made their plans for at least the first round of funds.

Public comment: Measure Q funding includes \$300k for administration (one full, one partial FTE). June 10th Board of Supervisors agenda approved the administrative budget associated with Measure Q.

Director Reid: Parks and OR3 are the administrators, the person who is hired will be the Measure Q analyst and there will also be an external reviewer. They will do a first pass at scoring them. The staff and third-party reviewer will make a first pass and then refer to COAB

Eligibility is a non-profit or agency. Could still have a model with a fiscal sponsor.

- 2. <u>Multi-Jurisdictional Hazard Mitigation Planning Process</u>
 Clare Peabody from OR3 will discuss the results of the Multi-Jurisdictional Hazard Mitigation Planning process.
 - i. Attachments: The website has a lot of content, and the draft MJHMP will be publicly posted there by September 29th:
 https://mitigatehazards.com/santacruzmjhmp/
 - ii. Powerpoint presentation

This is the County's first multi-jurisdictional hazard mitigation plan. It's a 5-year planning process required by FEMA. It can lead to grants for proactive investment to reduce repetitive loss over time. The Plans are nationally standardized.

The process included 10 participating agencies including 3 cities and several water agencies. They went through the planning exercise together. Received FEMA funding to do this planning effort.

On a local level, the exercise to bring together fire districts and water districts in the same room led to some good conversations. The draft is available through October 19th. The plans are very long and have to meet specific requirements in terms of vulnerability assessments. The Executive summary provides a good overview. Had 8 or 9 hazards profiled.

For a small county like ours, we cannot afford to recover from a disaster on our own. If the Federal Government doesn't help us, we will repair fewer things and slower. Not every priority in the plan is going to be federally fundable through FEMA but they are still reflected in the Plan as priorities, which may help with funding for other grant priorities.

City of Santa Cruz had done a hazard mitigation plan on their own and was just starting their 5-year implementation cycle. San Lorenzo Valley Water District also did their own hazard mitigation process. Both had representation at the County planning process.

Public Comment: thinks the county should use komodo as a fire suppressant, it's a non-toxic alternative. Concerned in particular around the watershed around loch Lomond.

H. CORRESPONDENCE

None

I. BOARD OF SUPERVISORS ACTION ON ITEMS AFFECTING WATER:

None

J. ITEMS OF INTEREST

No Discussion

K. AGENDA ITEMS FOR FUTURE MEETINGS

Annual Water Status Report
LAMP updates
HS Gov Tech implementation
Guidebook update
Al Well Log work

L. ADJOURNMENT 5:46

County of Santa Cruz

Water Advisory Commission

701 Ocean Street, Room 312, Santa Cruz, CA 95060 (831) 454-2022 TDD/TTY -Call 711 www.scceh.com EnvironmentalHealth@santacruzcounty.us

Subject: December 3, 2025 Water Advisory Commission Consent Agenda

Title: Groundwater Sustainability Agency Updates

Background

There are three groundwater basins in the County subject to the Sustainable Groundwater Management Act. The following updates come from the Groundwater Sustainability Agencies tasked with managing and monitoring those basins.

Pajaro Valley Water Management Agency

- Grant Funded Projects
 - Department of Conservation (DoC) Multibenefit Land Repurposing Grant, \$8.89 million: Staff and consultants continue to meet monthly with DoC staff and the Statewide Support Entity (SSE); staff and consultant have formed a steering committee, the first meeting of which is scheduled to occur on December 11, 2025.
 - Department of Water Resources (DWR) Watershed Resilience Pilot Grant, \$2 million: Staff and consultants hosted the fourth Pajaro River Watershed Resilience Workshop, focused on "Prioritizing Adaptation Strategies," on November 6, 2025, at Paicines Ranch; staff attended a DWR hosted "Cohort" meeting on November 14, 2025, to discuss the status of the pilot program; Staff submitted Invoice No. 5 in the amount of \$414,421 to DWR on September 4, 2025 and is preparing Invoice No. 6 for submission by November 29, 2025.
- College Lake Integrated Resources Management Project
 - Water Treatment Plant & Intake Facility
 - Work continues on the Intake Facility and Water Treatment Plant; commissioning meetings are ongoing. PV Water's Operations Team completed the 7-day operational test in October; the Contractor continues to work on dialing in the treatment process.
 - o Treated Water Pipeline
 - Project closeout activities are ongoing.

- Environmental: Monitoring continues per permit requirements
- Adaptive Management Plan (AMP): Fall 2025 vegetation surveys have been partially completed (some transects remain submerged) and Watsonville Wetlands Watch has started removing invasive species and vegetation management as per the Adaptive Management Plan.
- Outreach Activities: Website and social media updates are ongoing.
- Watsonville Slough System Managed Aquifer Recharge & Recovery Projects
 - Permitting: Work on permit applications continues with staff and consultants corresponding with permitting agencies.
 - Environmental: The Board approved the addendum to the Environmental Impact Report on March 19, 2025.
 - Outreach: Communications are ongoing; staff and the support team continue to meet with property owners.
 - Property Rights: Four of eleven properties have closed escrow, others are pending.
- Sustainable Groundwater Management Act Well Monitoring Network Expansion
 - Permitting: Staff is working with a consultant to prepare a scope of work to support the preparation and submission of a coastal development permit for two wells in the coastal zone.
 - Property Rights: Staff is engaged in discussions with property owners for proposed wells that would be located on privately owned land.

Environmental: Staff is engaged with consultants to prepare categorical exemptions in compliance with the California Environmental Quality Act.

Santa Cruz Mid-County Groundwater Agency

- The Agency is:
 - Continuing an evaluation of funding options for expenses associated with Sustainable Groundwater Management Act (SGMA) compliance. A draft of the funding options evaluation is expected in December 2025.
 - Considering applicants for two private well owner (PWO)
 representatives to fill positions that expire at the end of 2025. Six
 applicants were interviewed by an agency sub-committee. A
 recommendation for PWO representatives that will begin 4-year terms
 in 2026 is expected to be considered for Board approval in December
 2025.

- Continuing a study of increasing chloride concentrations in coastal monitoring wells in the Seascape area. Results of the study are expected in early 2026.
- The Agency held a coordination meeting with County Site Mitigation Program staff on November 12th to explore ways to better communicate on emerging groundwater contamination issues. The Agency is proposing an annual coordination meeting to ensure regular communications are occurring.
- The next regular meeting of the Agency is on December 11, 2025, at 6:00 pm.

Santa Margarita Groundwater Agency

- The Agency is:
- Seeking a private well owner (PWO) alternate representative position is currently vacant. More information is available at smgwa.org. Applications are due by December 15, 2025.
- Conducting a comprehensive periodic evaluation of the basin Groundwater Sustainability Plan (GSP). The Agency's consulting team indicated that addressing the Department of Water Resources' recommended corrective actions would likely require modifying sustainable management criteria for groundwater elevations and groundwater quality to a degree that a GSP amendment would be needed. The Agency will make a final decision on proceeding on a GSP amendment at its February 2026 meeting.
- The Agency held a coordination meeting with County Site Mitigation Program staff on November 12th to explore ways to better communicate on emerging groundwater contamination issues. The Agency is proposing an annual coordination meeting to ensure regular communications are occurring.
- The Agency participated in the 24th annual Environmental Town Hall on November 8th in Felton hosted by the Valley Women's Club.
- The next regular meeting of the Agency is on February 26, 2026, at 6:00 pm.

By: Sierra Ryan, Water Resources Program Manager with information from Rob Swartz and Brian Lockwood

County of Santa Cruz

Water Advisory Commission

701 Ocean Street, Room 312, Santa Cruz, CA 95060 (831) 454-2022 TDD/TTY -Call 711 www.scceh.com EnvironmentalHealth@santacruzcounty.us

Subject: December 3, 2025, Water Advisory Commission

Title: Drought Response & Outreach Plan (DROP) Update

Background:

On September 23, 2021, Senate Bill (SB) 552 was signed into law. SB 552 requires that "a county shall establish a standing county drought and water shortage task force to facilitate drought and water shortage preparedness for state small water systems and domestic wells within the county's jurisdiction". The Water Advisory Commission voted to adopt the responsibility for implementing <u>SB 552</u> and receives regular updates on the progress of implementation.

Updates:

- There are currently 200 applicants that have enrolled in the Regional Waterboards free well testing program. 177 wells have been tested and 23 are on the waiting list, down from 82 in October.
- Since the October 1st meeting, results were received for 44 wells and 9 had an exceedance of a drinking water standard.
 - One well with an exceedance for Hexavalent Chromium had two served households enroll in county services. The POU treatment installer is currently coordinating with those households.
- Staff provided guidance to several well-owners with E. coli exceedances and detections of Total Coliforms.
- County staff continues to work towards installing POU treatment systems at the Rountree Facility in South County, which is in exceedance for PFOA. Staff hope to have the units installed before the end of 2025.
- Sierra Ryan continues to represent interests of local government at the State <u>Drought Response Interagency Partnership (DRIP) Collaborative.</u>

By: Sean Abbey
Water Quality Specialist III

County of Santa Cruz

HEALTH SERVICES AGENCY ENVIRONMENTAL HEALTH DIVISION

Water Resources Program
701 Ocean Street room 312, Santa Cruz, CA, 95060
Phone:(831) 454-7519 Fax:(831) 454-4770

AI-OCR Well Layer Update Project DRAFT FINAL REPORT

Executive Summary:

Project Overview

The AI-OCR Well Layer Update Project modernized the County of Santa Cruz's GIS well layer—a foundational dataset for groundwater and water-resource management. Funded through the 2023 County Drought Resilience Planning Grant, the project applied AI-powered optical character recognition (OCR), custom Python scripts, GIS workflows, and structured quality-assurance (QA) methods to extract, clean, and integrate data from over 17,000 historical well completion files (representing approximately 10,000-11,000 unique wells). Many of these reports were decades-old scanned PDFs with handwritten or inconsistent entries, and the project's automated workflows brought them into a standardized, GIS-ready format to support more accurate analysis, planning, and long-term resilience.

Objectives

- Improve completeness and accuracy of historical well records.
- Standardize key fields including well ID, well type, depth, water levels, APN, and screen intervals.
- Align County, OCR derived, and Department of Water Resources (DWR) datasets for GIS integration.
- Reduce manual data-entry workload and significantly improve geocoding accuracy.

Approach

The project combined a custom-trained Microsoft Azure Document Intelligence model, six purpose-built Python scripts, fuzzy matching and aliasing logic, and multi-layered QA workflows to digitize, clean, classify, and integrate over 17,000 scanned well completion reports. ArcGIS-based workflows then geocoded wells to the highest achievable accuracy, with confidence flags for transparency.

Key Achievements

- Records Processed: 17,672 well completion reports (7,046 County-held; 10,626 DWR) processed in under one day—saving thousands of hours of manual effort.
- Unique Wells Identified: Created the most complete countywide inventory to date: 10,033 unique, deduplicated wells, including 713 previously unrecorded wells discovered in County archives.
- Dataset Alignment: Reconstructed 95% of DWR entries directly from scanned originals.

• Attribute Completeness:

- o OCR workflows filled 78% of missing drill depths.
- Improved extraction of static water level, depths, yield, screen intervals, drilling methods, and locations.
- Classified wells into production (6,092), destruction (2,193), monitoring, and additional types.

• Geocoding Improvements:

- 91% of wells geocoded beyond PLSS centroid placement.
- 5,799 used precise County-verified coordinates;
- 3,288 mapped to parcel centroids;
- 898 mapped using PLSS or manual fallback.
- New "Exact" vs. "Approximate" vs "PLSS" confidence flags improve spatial transparency.

• **Duplicate Resolution:** Resolved 66 duplicate IDs and more than 6,000 redundant scans, improving dataset quality.

Quality Assurance Highlights

- Approximately 15% of records were flagged for review based on issues such as:
 - Conflicting depth measurements
 - Well type inconsistencies
 - Low-confidence APN/address matches
- Red-highlighted Al-derived fields, confidence scoring, and structured review queues ensured efficient and reliable manual verification.

Outcomes & Impact

The project produced the most accurate, complete, and spatially reliable well layer ever assembled for Santa Cruz County. Published to GISWeb in December 2025, the dataset now supports:

- Drought resilience planning
- · Groundwater monitoring and basin assessment
- Well permitting and oversight
- Long-term water resource protection

The workflow is reproducible, scalable, and statewide-ready, offering a model for other counties and agencies seeking to modernize archival water datasets.

Conclusion

By integrating AI-OCR, Python automation, QA, and GIS, the County transformed decades of handwritten, inconsistent, and poorly geocoded records into a unified, high-confidence dataset. The project dramatically reduced manual workload, increased spatial and attribute completeness, and demonstrated how modern AI tools can convert legacy water records into actionable information for sustainable groundwater management.

The remainder of this report expands on these findings, outlining the methods, data processing steps, QA approach, and final outcomes in greater detail

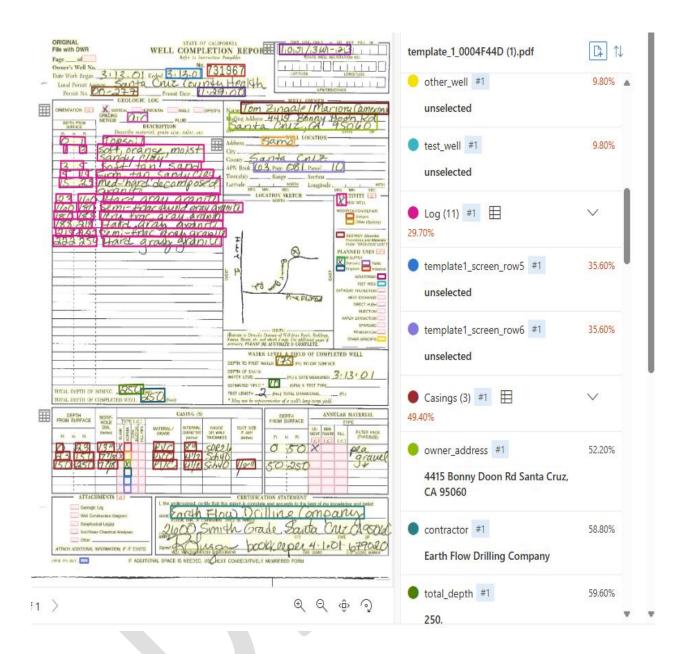
Introduction

The AI-OCR Well Layer Update Project modernizes the County of Santa Cruz's GIS well layer, a critical tool for water resource management within the County, by automating data extraction and matching from well completion reports. Funded through the 2023 County Drought Resilience Planning Grant, the project combines AI-powered OCR, custom Python scripting, QA procedures, and GIS integration to significantly improve data accuracy and completeness. Initiated in 2024, this report outlines the project's methodology, including model training, six core data processing scripts, QA workflows, and GIS updates, as well as the resulting improvements.

Background and Challenge

Since its creation in 2005, through the merger of County and partner agency datasets, the County of Santa Cruz's GIS well layer has faced persistent issues with incomplete and inconsistent information. A 2009 integration with the DWR well layer provided some improvements; however, more than 75% of the 11,700 wells still lacked well type classifications, and a significant number of records were missing altogether. In addition, several wells were entered into the dataset more than once. These gaps and inconsistencies have limited the Water Resources Division and other agencies' ability to accurately identify production wells and assess their impacts.

The most recent well layer update project was designed to address these data gaps, and more, by applying AI-powered OCR to scanned well completion reports. Using custom scripts, the project extracts, cleans, and standardizes key fields—such as well ID, depth, water levels, APN, screen intervals, and address—and employs fuzzy matching to align these records with the existing DWR's well database This process enhances data completeness and consistency while preserving the County's existing spatial accuracy.


Methodology

The project employed Microsoft Azure Document Intelligence for OCR, supported by six custom Python scripts for data processing, continuous QA to validate outputs, and GIS integration to update and visualize the results. The overall workflow is summarized below, with a visual overview of the script sequence provided in the attached diagram (*Script Sequence Workflow*, Appendix Page 1).

Model Training

A custom Azure Document Intelligence model was trained using nine standardized DWR well completion report templates, dating back to the late 1940s to early 1950s. The model was designed to extract key fields such as well ID, total depth, water levels, completion dates, yields, well type, seals, lithology, screen intervals, APNs and other locational information. It was optimized to handle a wide range of report formats—including handwritten entries and low-resolution scans—ensuring consistent and accurate data extraction across standard California DWR reports.

An example of the model's digitized output, displaying color-coded bounding boxes for extracted data and a right-hand panel listing some of the parsed fields, is provided in the following Azure Document Intelligence screenshot:

Data Processing Scripts

Six custom Python scripts were developed to process, clean, classify, and enhance the data extracted through OCR. The scripts leverage Al-assisted coding tools (e.g., ChatGPT, Copilot) to accelerate prototyping and debugging. They utilize libraries including pandas, fitz, tempfile, numpy, os, json, logging, re, collections, rapidfuzz, azure-ai-formrecognizer, and openpyxl.

The scripts work sequentially to extract structured data from scanned well reports, clean and standardize fields, classify well types, match records across multiple

datasets, integrate county records, and highlight AI-derived fields for quality control. The workflow for each script is summarized below.

1. OCR Extraction Script

<u>Purpose:</u> Convert raw PDF well completion reports into structured JSON data suitable for downstream processing.

Overview:

Processes scanned PDF well reports using Azure Document Intelligence for OCR, with fitz handling PDF manipulation and compression.

Key Functions:

- Compresses large PDFs (>4 MB) to ensure compatibility with Azure OCR.
- Extracts fields such as well_id, depth, APN, and Casings using the customtrained Azure model.
- Captures page- and line-level content in nested JSON dictionaries.
- Logs extraction errors and skips failed PDFs.
- Outputs JSON files to specified directory.

2. Data Extraction and Classification Script

<u>Purpose:</u> Transform JSON outputs from OCR into structured Excel tables, with keyword detection to support well type classification.

Overview:

Processes JSON outputs from the OCR Extraction Script, extracting key fields and identifying destruction-related keywords. Outputs two Excel sheets: *Main Data* and *Casings*.

Key Functions:

- Parses JSON dictionaries, extracting fields like well_id, destruction_well, address, and APN.
- Detects destruction-related keywords (e.g., "abandonment," "destroy,"
 "decommission") using fuzzywuzzy (token_sort_ratio threshold 85), including common misspellings.
- Converts Casings lists into DataFrame rows with traceability via source_file and row index.

- Skips invalid JSON structures and logs errors.
- Generates Excel file output to specified directory.

3. Data Cleaning and Matching Script

<u>Purpose:</u> Produce a cleaned, deduplicated dataset with standardized fields, enhanced classifications, and matched geospatial data.

Overview:

Processes the Excel output from extraction to clean, standardize, and enrich data. Handles OCR errors, refines well classifications, extracts perforation intervals, and prepares addresses/APNs for matching.

Key Functions:

- Cleans well_id using regex, handling OCR misreads.
- Classifes templates (1–9 or Unknown) via revision-based signatures.
- Refines destruction classifications using baseline keyword lists.
- Extracts perforation intervals and validates top/bottom values.
- Validates the values of Total Completed Depth and Total Drill Depth, ensuring that Total Completed Depth is always greater than Total Drill Depth.
- Detects duplicates using weighted scoring and retains the most complete record.
- Cleans addresses and other fields (e.g. City, Driller Name, Fluid Type, etc.) via dictionary-based aliases and regex;
- Searches for and extracts APNs from the document (which may be located in multiple places within the document).
- Derives Type of Work hierarchically from fields like keyword_destruction_well or new_well.
- Handles invalid numeric fields (NaN) and missing data.
- Generates Excel file output to specified directory.

4. Data Matching and Merging Script

<u>Purpose:</u> Align OCR-derived well records with the DWR database, enhance APN and address accuracy, and produce a comprehensive matched dataset.

Overview:

Integrates cleaned OCR data with DWR records and optionally checks Monterey

County datasets, generating multiple output files for matched and unmatched records.

Key Functions:

- Cleans well IDs and normalizes APNs (handling 8- and 9-digit formats).
- Performs primary matching on well IDs, validated by depth or water level.
- Multiple matches are resolved with a weighted scoring algorithm
- Refines APNs and addresses using parcel validation and fuzzy matching techniques.
- Validates DWR APNs against a dictionary mapping to parcel addresses. If an APN is invalid, it extracts APNs from the Well Location or other fields if present, or employs rapidfuzz for address matching. Final APNs are formatted to align with the parcel database standards used for GIS integration.
- Checks unmatched OCR records against Monterey dataset.
- Outputs:
 - unmatched_ocr_output.xlsx
 - unmatched_dwr_output.xlsx
 - matched_output.xlsx
- Maintains source tracking and logs matching details for QA.

5. County Database Matching Scripts

<u>Purpose:</u> Integrate county database records with DWR or unmatched OCR data, validating and enriching well records.

Overview:

Two scripts align county records with either DWR data or OCR data, producing matched and unmatched outputs.

Key Functions:

- Normalizes county and source IDs using regex (handling OCR misreads and variations).
- Matches county Log_Number to DWR Legacy Log Number/WCR Number or OCR well_id_cleaned.
- Prevents duplicate matches with sets and logs metadata.
- Produces three Excel outputs per script: matched records, unmatched county records, and unmatched source records.

6. Field Highlighting Script

<u>Purpose:</u> Visually highlight OCR-derived or non-validated fields in the final supplemented dataset for QA.

Overview:

Applies conditional formatting to the supplemented dataset Excel file using openpyxl, marking Al-sourced fields or unmatched values in red font.

Key Functions:

- Loads Excel workbook and maps columns dynamically.
- Highlights final_apn and final_address if match_source indicates nonvalidated or OCR-derived data.
- Highlights other fields based on a predefined field_map when source = "AI."
- Skips missing columns and logs errors.
- Saves the modified Excel file, overwriting the input for review.

The following image shows an example output of the field-highlighting script, with color-coded Al-generated values:

Note: See the Appendix for the code and detailed function descriptions.

Quality Assurance

The Well Layer Update data processing pipeline incorporates multiple layered quality assurance mechanisms to improve accuracy, reliability, and traceability. These mechanisms operate at the field-cleaning, matching, and validation stages and generate flags, scores, source tracking, and visual cues that guide manual review. Outputs from the Data Cleaning and Matching Script, Data Matching and Merging Script, County Database Matching Scripts, and Field Highlighting Script include dedicated QA columns, confidence metrics, and conditional formatting designed to highlight low-confidence or potentially erroneous values.

The key QA mechanisms are summarized below.

1. Location Matching Confidence and Source Tracking

<u>Purpose:</u> Provide transparent, quantifiable confidence in the final APN and address used for geocoding, enabling targeted manual review of lowerquality locations.

<u>Implementation:</u>

- Matching follows a strict hierarchy: exact validated APN → exact validated address → fuzzy validated APN → fuzzy validated address → fallback methods.
- Every record receives:
 - match_source / OCR_match_source: a human-readable string describing the match method and score (e.g., "ID match → APN validated", "Fuzzy address match (score 78.2%)")
 - Numeric fuzzy scores (0–100) from rapidfuzz when fuzzy address or APN parcel is used.
 - Alias/regex confidence scores when street-name or city dictionaries are applied during address cleaning.

QA Role: Records with fuzzy scores <85, non-APN-based matches, or low alias/regex scores (<80%) are prioritized for manual review using GIS tools and source PDFs.

2. Al Source Indicators for OCR-Derived Data

<u>Purpose:</u> Distinguish OCR-derived data from DWR or county-validated data.

<u>Implementation:</u> Scripts track OCR-derived fields using source columns (e.g., apn_source, depth_source) marked "AI." The Field Highlighting Script applies red font to these cells (e.g., final_apn, final_address, seal_cleaned, template_id).

<u>QA Role:</u> Red highlights visually flags potentially error-prone data, prompting analysts to verify against the original PDFs.

3. Type Mismatches for Record Consistency

<u>Purpose:</u> Detect discrepancies between DWR and OCR-derived well type classifications.

<u>Implementation</u>: The Record_Type_Mismatch field flags conflicts between DWR B118WellUse and OCR-derived types

<u>QA Role:</u> Prioritize mismatched records and cross-reference source documents to resolve classification errors.

4. Destruction Well Cross-Referencing

<u>Purpose:</u> Improve destruction well accuracy, especially when handwritten notes override checked boxes (common when a proposed well was abandoned after drilling began).

<u>Implementation:</u> keyword_destruction_well refines the initial checkbox detection by comparing additional keyword counts against template-specific baselines.

QA Role: Records where OCR and keyword indicators disagree and are flagged for manual confirmation.

5. Total Depth Validation Flag (depth_flag / review_depths)

<u>Purpose:</u> Ensure consistency between Total Drill Depth and Total Completed Depth and catch common OCR or data-entry errors.

Implementation:

- o Validates that Total Drill Depth ≥ Total Completed Depth (with minor tolerance).
- Sets depth_flag = 'review depths' when the relationship is violated or values appear swapped.

6. Dictionary-Based Alias Cleaning with Regex Confidence Scoring

<u>Purpose:</u> Standardize inconsistent or misspelled categorical/text fields (City, Driller Name, Fluid, Test Type, Drilling Method, etc.) while quantifying confidence.

<u>Implementation:</u>

- Large alias dictionaries map historical and variant names to standardized values.
- Two-stage cleaning: (1) dictionary lookup with rapidfuzz token-set ratio,
 (2) regex pattern fallback if no strong dictionary hit.
- Each cleaned value receives an alias_match_score (0-100)

Manual Review Process

The QA outputs feeds into a structured review workflow:

- Red-highlighted Al-sourced fields (Field Highlighting Script)
- depth_flag = True or conflicting depth measurements
- Low dictionary/regex alias match scores (<80%) on City, Driller Name, Fluid
 Type, Drilling Method, etc.
- Record_Type_Mismatch or conflicting destruction indicators
- Fuzzy address/APN match scores <85 (especially non-APN or direct address matches)
- OCR_match_source indicating fallback or low-confidence location methods
- B118WellUse anomalies possibly caused by 'Confidential' stamp interferences

<u>Verification Tools:</u> ArcGIS Pro, original scanned PDFs, county parcel records and historical lists are utilized to update flagged record values.

GIS Workflow

The GIS workflow for the Well Layer Update emphasizes maximizing spatial accuracy of well locations by integrating updated database outputs with county-maintained spatial layers. It combines automated geocoding, join operations, and manual review to produce a high-confidence, GIS-ready dataset. The workflow prioritizes county-verified locations, leverages parcel-based centroids for unmatched (county) APN records, and applies PLSS grid centroids or manual location sketch plotting as fallbacks for records with missing or low-confidence location data.

Geocoding Process

1. Matching with County-Mapped Well Records:

<u>Purpose:</u> Preserve the accuracy of well locations already verified and mapped by county staff.

Implementation:

- Updated database records that match existing county-mapped wells are spatially joined based on Log_Number and well_id_cleaned.
- The county well layer geometry, established over years from DWR report records and maps, is preserved.
- County unique fields such as county_Staff are appended to matched records.

QA Role:

 High-confidence matches inherit county-verified locations, reducing the need for further location verification.

2. APN and Address-Based Geocoding with Parcel Layer

<u>Purpose:</u> Assign the most precise possible locations to wells using validated APNs or addresses, while distinguishing exact from approximate placements.

Implementation:

- Records with a validated APN or address (cross-referenced against the County's Parcel database) are spatially joined to the centroid of the corresponding parcel polygon.
- Each record receives a Location_Accuracy field with one of two values:
 - "Exact" assigned when the match is based on an exact, validated APN or address match, or inheritance from an existing county-mapped well.
 - "Approximate" assigned when the match relies on fuzzy APN or address matching with a fuzz score <100 but ≥80–85

3. Fallback to PLSS Grid or Manual Review

<u>Purpose</u>: Provide approximate locations for records that are lacking or have low confidence APN/address data.

Implementation:

- PLSS Grid: Wells are mapped to the centroid of their corresponding PLSS Section grid in the county.
- Manual Review with Location Sketches: Extract well positions (ongoing) from sketches in DWR reports into ArcGIS.
- Records with low (<80) OCR_match_source fuzzy scores (e.g., "Address matched (score 63.64)") are flagged for fallback or manual review processing before mapping to that address or PLSS.

QA Role:

 Wells without confident location data are mapped via PLSS centroids and are subject to future cross-checks with the source file to improve location data manually.

GIS Summary:

This GIS workflow ensures well locations in the Well Layer Update are geocoded with maximum accuracy by:

- 1. Prioritizing county-verified coordinates.
- Leveraging parcel-based centroids for direct match or high-confidence APN records.

3. Applying existing DWR PLSS grid mapping for low-confidence or missing data.

Results and Metrics

The project processed 17,672 well completion reports (7,046 county, 10,626 DWR) in batch mode using the developed Python scripts, achieving improvements in data integration, accuracy, and efficiency. The following results and metrics highlight improvements across data processing, matching, geocoding, field supplementation, QA, and GIS integration.

Data Processing

 Total Records Processed: Successfully extracted data from 17,672 files, with nearly all files processed without errors, despite challenges with low-quality scans and illegible handwritten data. Note some of these files ended up not being well completion reports (i.e. e-logs, boring logs, etc.)

Matching Accuracy

- County-to-DWR Matching: 5,683 of the 6,698 county-scanned well completion reports (85%) were successfully matched to corresponding DWR records using a combination of exact well ID matching and fuzzy reconciliation techniques.
- The remaining ~15% (1,015 records) were unmatched due to either the record not existing in the DWR database or poor scan quality or illegible handwriting that prevented accurate well ID extraction.
- As of April 28, 2025, the DWR online system for WCR contained 9,406 well records geographically associated with Santa Cruz County. Around the same date, 10,651 PDF files were downloaded from the DWR website for processing.
- After the initial county-to-DWR matching, 3,723 DWR records remained unsupplemented by county scans (9,406 total DWR records – 5,683 county-matched). Of these, 3,070 were subsequently matched and enriched using OCR data extracted directly from the downloaded DWR-sourced PDFs

- (following deduplication in the Data Cleaning and Matching Script). This left only 653 DWR records without OCR-derived supplemental data.
- Unique and Non-Well Records: 713 county-scanned records had no corresponding entry in the DWR database (true new records).
- ~530 county files were identified during QA review as non-well completion reports (e.g., boring logs, plan sets, or electric logs) or were illegible and excluded from final counts.
- The OCR extraction and processing pipeline, when applied to the 10,651 PDFs downloaded from DWR's OSWCR website, successfully recreated 95% of the 9,406 official DWR records for Santa Cruz County using only the digitized documents themselves. When combined with the 713 previously unrecorded wells identified from county-held scans, the project achieved 103% relative completeness compared to the official Santa Cruz County DWR database as of April 2025.
- The updated master database contains 10,033 unique well records. This final
 dataset is a synthesis of DWR records enriched with AI-OCR-extracted data,
 713 previously unrecorded wells identified from county-held scans, and county
 records that were supplemented and validated using OCR.

Location Accuracy and Improvements

- Geocoding Success: Of the 10,033 wells in the updated dataset, 9,135 (91%)
 now have geocode locations ranging from exact well locations to
 approximate well locations—a significant improvement over the previous
 layer.
 - County-Mapped Wells: 5,799 matched records inherited precise county coordinates through GIS joins.
 - APN-Based Geocoding: 3,288 wells were mapped to parcel centroids, with 80% (2,644) validated as high-confidence (e.g. "APN matched") and the remaining 644 as approximate locations.

- PLSS/Manual Fallback: 898 wells with low fuzzy-match scores (<80%) or missing location data were mapped to PLSS centroids, flagged for later QA review.
- The remaining 48 inherited locations from DWR associated with GPS,
 Other, or Surveyed to Benchmark.

Well Type Improvements

The previous County well database had limited and inconsistently defined well type information. It often wasn't clear whether a well was a production well—or what type of production it served (domestic, irrigation, industrial, or municipal)—and it also did not reliably distinguish destruction wells from 'other' categories such as test, monitoring, or boring wells.

The updated database now classifies each well type based on the information available in the well completion reports, resulting in a more accurate and consistent countywide dataset. The updated counts include 6,092 production wells, 2,193 destruction wells, and 1,747 wells classified as other types.

Field Supplementation

 Critical Fields Filled: The Data Matching and Merging Script supplemented previously blank or unknown DWR fields using OCR and county data:

Field	Records Filled	l Total Matched	Percent Filled
Well completion date	513	8,752	5.9%
Total drill depth	6,852	8,754	78.3%
Final well depth	405	8,754	4.6%
Static water level	545	8,754	6.2%
Well yield	1,074	8,754	12.3%
Well use/source	1,788	8,754	20.4%

Field	Records Fille	Records Filled Total Matched Percent Filled			
Drilling method	896	8,754	10.2%		
Screen intervals	670	8 754	77%		

 Unique Fields: Additional fields (e.g., well seals, first water levels encountered, geologic materials) were extracted. Note: geologic materials were not processed or incorporated in any of the output datasets.

Duplicate Cleanup

 Duplicate Resolution: The Data Cleaning and Matching Script resolved 66 duplicate well IDs and 6000+ duplicate PDF scans, reducing redundancy by ~5% of the total dataset.

Time Savings

- Processing Efficiency: 17,672 reports were processed in under one day, saving significant amounts of time compared to manual extraction and geocoding, equivalent to thousands of hours saved if that would have been required to manually supplement or input the data.
- Script Runtime Breakdown:
 - OCR Extraction Script: ~70% of runtime
 - Post-Processing Scripts: ~30% hours, optimized by batch processing and indexing

Quality Assurance Metrics

QA-Flagged Records: Approximately 15% of all records (2,651 of 17,672) were flagged for manual review. Key flag categories included:

- ~2000 records affected by "Confidential" stamp interference (misread numbers, checkbox errors).
- 393 records with conflicting depth measurements (review_depths flag).
- 181 records with well type mismatches (often caused by "Confidential" stamp interference).
- 1,857 records with fuzzy match scores below 80% (from OCR_match_source).
- Roughly 5% of supplemented fields using the street-name alias dictionary generated low alias match scores (<80%), requiring manual refinement.

Discussion

The Well Layer Update project represents a transformative advancement in well data management, leveraging new and advanced AI tools to reducing manual effort from thousands of hours to under one day while enhancing the GIS well layer's quality. Key outcomes include:

- High match rates: 95% overall success across OCR records and DWR databse records
- Improved geocoding accuracy: 91% of wells geocoded to a location other than the centroid of the PLSS.
- Field supplementation: Critical fields filled (e.g., 78.3% of total drill depths)

Challenges and Solutions:

- Poor scan quality / illegible handwriting affected numerous reports, mitigated through data cleaning, OCR error logging, and QA.
- Template inconsistencies: Handled by template-specific cleaning logic
- OCR errors: Minimized using a combination of fuzzy matching, dictionarybased aliasing, standardized or pattern-based cleaning routines, and QAflagged review.

Scalability

Statewide-Ready Framework:

The California DWR template-based processing, APN integration, and GIS workflows create a scalable framework that can be extended to other counties or applied to statewide DWR datasets.

Potential Enhancements

Model Training & Template Improvements

- Train additional documents to improve value extraction, especially for Template 2.
- Add training for all selection boxes across templates (equipment-type checkboxes, cathodic protection wells, injection wells, etc.) to prevent lesserused boxes from interfering (common) with more critical selections located nearby.
- Additional training across all known templates to address missed or unrecognized templates.
- Retrain the AI-OCR model to better detect monitoring wells and other specialized well types.
- Refinement of template classifications.
- Improved template-specific logic for screen interval extraction, especially for Template 1.
- Template-specific well ID cleaning, such as enforcing expected ID ranges (e.g., Template 2).

OCR & Document Handling

- Improved OCR performance for low-quality or complex scans.
- Automated detection and removal of "Confidential" stamps.
- Enhanced parsing and handling of PDFs containing multiple well completion reports.
- Add logic to detect and classify documents that are not well completion reports (borings, e-logs, site plans, etc.).

Data Cleaning & Field Logic Enhancements

- Strengthen cleaning algorithms for Total Depth, including:
 - cross-checking Total Drill Depth against the bottom depth in the geologic log,
 - o handling "Same" entries,
 - applying fallback logic to populate final depth from geologic log values when needed.
- Add logic and fields for detailed screen interval depths.
- Add lithology post-processing.
- Enhance screen interval logic (e.g., ensure the screen checkbox aligns with slot-size entries in the same row).
- Add a new field to classify wells that were attempted but ultimately dry (Files that contain: "Dry", "Dry Hole", "Dry Well").
- Logic to classify wells with no "Proposed Use" selected as Production if a screen interval exists, with a QA flag to ensure they aren't monitoring wells.
- More robust handling of duplicate well IDs.

Quality Assurance Enhancements

- Increased QA checks comparing Al-extracted data with DWR records to identify and correct errors
- Add QA checks to flag impossible or inconsistent values, such as:
 - static water level deeper than total drill depth,
 - o bottom of perforated interval deeper than total drill depth.
- Additional QA checks to ensure fuzzy-matched low-score addresses remain within previously identified PLSS grids.
- Incorporate confidence scores in JSON outputs to guide QA and validation.

APN, Address, and Location Improvements

- Integrate historical APN datasets to account for subdivisions or APNs that have changed over time.
- Expand location-improvement logic, including using owner name information to fuzzy match against parcel databases and verify whether a corresponding parcel address aligns with the WCR-reported street/location.
- Add logic to split extracted TRS values into Township, Range, and Section fields for new or supplemented records.

Additional Functional Enhancements

Utilize unredacted reports (when available) to access owner information.

Conclusion

The Well Layer Update project demonstrates the effectiveness of automated data processing and GIS integration in modernizing well record management, as well as the transformative potential of AI-powered OCR software. Recent advancements in AI OCR have significantly improved accuracy—particularly when handling complex

layouts, mixed formatting, and handwritten text—making it possible to rapidly digitize and analyze large volumes of historical documentation.

By processing 17,672 well completion reports in under a day, identifying missing records, supplementing key fields, and achieving 91% geocoding accuracy (tied to locations other than PLSS centroids), the project illustrates major gains in efficiency, completeness, and spatial reliability. These outcomes highlight the value of applying AI OCR to historical records across other County divisions, as well as in other counties or organizations with large archival datasets.

As AI technology continues to advance, accuracy and processing speed will further improve, expanding opportunities to modernize legacy datasets and integrate them into contemporary water management and planning workflows.

The updated well layer was integrated into GISWeb in December 2025, supporting drought resilience efforts and enhancing water resource decision-making. The project demonstrates how modern tools can transform previously inaccessible or labor-intensive data into a reliable, comprehensive resource for staff, analysts, and policymakers.

Appendix

Below is the script flowchart workflow as well as the primary scripts, with comments explaining the purpose of key functions.

Script Sequence Workflow Download County databse (C1) and DWR database (DWR1) Run OCR on all Run OCR on all DWR county well logs well logs Post process json Post process json files to convert to files to convert to excel excel Clean extracted data (ids, address, apn, Clean extracted data etc.) to create (ids, address, apn, OCR(DWR1) etc.) to create OCR(SCC1) Match OCR1(SCC1) records to OCR(DWR1) Match OCR(DWR1) records to Unmatched_DWR1 (from match outputs above) Merge Matched Records Match: Override ocr fields with dwr fields (if not null), check apn and address to confirm they exist in parcel database, if they dont exist then fuzzy match to database, if no match above ~80 then use ocr apn and address record. Create OCR(SCC1) +OCR(DWR1) Delete DWR Matching Records from DWR1 to create DWR2 Delete OCR Matching Records from OCR(SCC1) to create OCR(SCC2) Match OCR1(SCC) + OCR1(DWR) with C1 Match. Create SCC1_DWR1_C1. Map to county location for records that have apn. For those without apn, map to PLSS location Delete matching C1 records to create C2 Delete matching records from OCR + DWR to create OCR(SCC1) + OCR(DWR1)_final. Map to apn Match OCR(SCC2) with C2 (match_ocr2_c2.py) Match: Create OCR(SCC2)_C2. Map to C2 locations Delete matching records Delete matching from OCR(SCC2) to records from C2 to develop OCR(SCC3). create C3 Map to APN or PLSS. Match C3 with DWR2 Match: Create C3+DWR2 and map

to C3 locations

Delete matching records

from C3 to create C4.

Delete matching records

from DWR2 to create

DWR3. Map to existing DWR location

C:\Well Layer Update\Python\Azure\OCR Extraction Script secure.py

```
import os
 2
    import json
    import fitz
4
   import tempfile
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.formrecognizer import DocumentAnalysisClient
6
7
8
   # Azure config
9
   # Set these in your environment before running the script:
        AZURE FORMRECOGNIZER ENDPOINT = https://your-resource.cognitiveservices.azure.com/
10
11
        AZURE FORMRECOGNIZER KEY
                                      = your-key-here
12
13
    endpoint = os.getenv("AZURE_FORMRECOGNIZER_ENDPOINT")
14
             = os.getenv("AZURE FORMRECOGNIZER KEY")
15
   model_id = os.getenv("AZURE_FORMRECOGNIZER_MODEL_ID", "wcr11")
16
17
   # Validate that required variables are present
18
19
    if not endpoint or not key:
        raise EnvironmentError(
20
            "Please set the environment variables AZURE FORMRECOGNIZER ENDPOINT"
21
22
            "and AZURE_FORMRECOGNIZER_KEY before running this script."
        )
23
24
25
    # Trim any accidental whitespace or trailing slashes
26
    endpoint = endpoint.rstrip("/")
27
    input_folder = r"S:\Water Resources\1_Water Resources Program\GIS\Well Layer Update\Well
28
    Completion Reports\Santa Cruz County\Failed"
    output folder = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
29
    Update\Python\Outputs\ocr11\json files"
    os.makedirs(output_folder, exist_ok=True)
30
31
32
   # Azure client
33
   client = DocumentAnalysisClient(endpoint=endpoint, credential=AzureKeyCredential(key))
34
35
    # Compress large image only PDFs
    def compress pdf with pymupdf(file path, max size mb=4):
36
37
        file_size_mb = os.path.getsize(file_path) / (1024 * 1024)
38
        is image only = True
39
40
        try:
41
            doc = fitz.open(file path)
42
            for page in doc:
43
                if page.get_text().strip():
44
                    is image only = False
45
                    break
46
```

```
47
            if file_size_mb <= max_size_mb or not is_image_only:</pre>
48
                return file_path # Skip compression
49
            print(f" \ Compressing large image-only PDF: {os.path.basename(file path)}")
50
51
            temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
52
            temp file.close() # Close so fitz can write to it
            new doc = fitz.open()
53
54
55
            for page in doc:
56
                pix = page.get pixmap(dpi=100)
57
                img_bytes = pix.tobytes("jpeg")
58
                img_doc = fitz.open("jpeg", img_bytes)
59
                rect = img doc[0].rect
60
                pdf_page = new_doc.new_page(width=rect.width, height=rect.height)
                pdf page.insert_image(rect, stream=img_bytes)
61
62
            new_doc.save(temp_file.name)
63
            new doc.close()
64
            return temp_file.name
65
66
67
        except Exception as e:
            print(f"Could not compress PDF ({file_path}): {e}")
68
69
            return file path
70
71
   # Process each PDF
72
   for dirpath, dirnames, filenames in os.walk(input folder):
        for filename in filenames: #iterate over the filenames list
73
74
            if filename.lower().endswith(".pdf"):
75
                original_path = os.path.join(dirpath, filename) # Use dirpath to construct full
    path
76
                pdf to process = compress pdf with pymupdf(original path)
77
                print(f"\n = Processing file: {filename}")
78
79
                with open(pdf_to_process, "rb") as f:
80
81
                    try:
82
                        poller = client.begin_analyze_document(
83
                            model id=model id,
                            document=f
84
85
                        )
86
                        result = poller.result()
87
                        result_dict = result.to_dict()
88
89
                        json_filename = os.path.splitext(filename)[0] + ".json"
                        json_path = os.path.join(output_folder, json_filename)
90
91
92
                        with open(json_path, "w", encoding="utf-8") as json_file:
93
                            json.dump(result_dict, json_file, indent=2)
94
95
                        print(f"Saved JSON: {json path}")
```

```
96
 97
                     except Exception as e:
                         print(f"Error processing {filename}: {e}")
98
99
100
                 # Clean up temp file if we compressed
                 if pdf_to_process != original_path:
101
102
                     try:
103
                         os.remove(pdf_to_process)
104
                         print(f"Deleted temporary file: {os.path.basename(pdf_to_process)}")
105
                     except Exception as e:
106
                         print(f"Failed to delete temp file: {e}")
```

C:\Well Layer Update\Python\Azure\Data Extraction and Classification Script.py

```
import os
 2
   import json
   import pandas as pd
   from fuzzywuzzy import fuzz
 4
   import re
 5
 6
 7
   # Paths for input JSON files and output Excel file
   input_folder = r"S:\Water Resources\1_Water Resources Program\GIS\Well Layer
8
    Update\Python\Outputs\ocr11\json files"
    output excel = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
    Update\Python\Outputs\ocr11\master files 2\extracted_data_dwr.xlsx"
10
   # Destruction related keywords (including common misspellings)
11
   destruction keywords = [
12
        "abandonment", "abandon", "abandone", "abandoment",
13
14
        "destroy", "destruction", "distruction", "demolish", "decommision", "decommission",
    "destroying"
15
    destruction_keywords = [kw.lower() for kw in destruction_keywords]
16
17
    # Extract raw text from JSON content for keyword search
18
    def extract_raw_text(json_content):
19
20
        # Try to get the main content field
        raw text = json content.get("content", "").lower()
21
22
        if not raw_text: # Fallback to concatenating line content from pages
            raw_text = " ".join(
23
                line["content"].lower()
24
25
                for page in json_content.get("pages", [])
26
                for line in page.get("lines", [])
27
                if "content" in line and isinstance(line["content"], str)
28
            )
29
        return raw text
30
31
    #Count destruction keywords using fuzzy matching to handle OCR errors
    def count destruction keywords(text, keywords, threshold=85):
32
33
        words = re.findall(r'\b\w+\b', text) # Split into words
34
        matched = []
        for word in words:
35
36
            scores = [fuzz.ratio(word, kw) for kw in keywords]
37
            max score = max(scores, default=0)
            if max score >= threshold:
38
39
                best_index = scores.index(max_score)
                best match = keywords[best index]
40
                matched.append((word, best_match))
41
        # Get unique original words
42
        unique_matched = sorted(set(word for word, _ in matched))
43
44
        return unique matched
45
```

```
# Initialize lists for data storage
47
   main_data = []
    casings_data = []
48
49
50
    # Process JSON files to extract fields, generate destruction keywords, and structure data
51
    for filename in os.listdir(input folder):
        if filename.endswith(".json"):
52
            path = os.path.join(input_folder, filename)
53
            with open(path, "r", encoding="utf-8") as file:
54
55
                try:
                    json_content = json.load(file)
56
57
                    doc = json_content.get("documents", [{}])[0]
58
                    fields = doc.get("fields", {})
59
60
                    # Extract raw text for keyword search
                    raw_text = extract_raw_text(json_content)
61
                    matched_keywords = count_destruction_keywords(raw_text, destruction_keywords)
62
63
                    # Build keyword string
64
                    keywords str = ', '.join(matched keywords) if matched keywords else ''
65
66
67
                    # Main data: all top-level fields except Casings and Log, preserve existing
    destruction well
68
                    record = {
                        k: (v.get("content") if isinstance(v, dict) else v)
69
70
                        for k, v in fields.items()
                        if k not in ["Log", "Casings"]
71
72
                    record["source_file"] = filename
73
                    record["additional_destruction_keywords"] = keywords_str
74
75
76
                    main_data.append(record)
77
                    # Casings data: parse each entry in the list
78
79
                    if "Casings" in fields and fields["Casings"].get("value_type") == "list":
                        for idx, casing in enumerate(fields["Casings"]["value"], start=1):
80
                            row = {
81
82
                                 "source_file": filename,
83
                                 "row index": idx
84
                            if casing.get("value_type") == "dictionary":
85
86
                                for key, val in casing["value"].items():
                                     row[key] = val.get("content") if isinstance(val, dict) else
87
    val
88
                                 casings_data.append(row)
89
90
                except Exception as e:
91
                    print(f"Error processing {filename}: {e}")
92
   # write extracted and classified data to Excel with separate sheets for Main Data and Casings
```

```
with pd.ExcelWriter(output_excel, engine="openpyxl") as writer:
pd.DataFrame(main_data).to_excel(writer, index=False, sheet_name="Main Data")
pd.DataFrame(casings_data).to_excel(writer, index=False, sheet_name="Casings")
print(f"Excel file created with 'Main Data' and 'Casings' at: {output_excel}")
```

C:\Well Layer Update\Python\Azure\Data Cleaning and Matching Script.py

```
1 import pandas as pd
 2
   import re
 3
   from rapidfuzz import fuzz, process
 4
 5
   # === File Paths ===
   input excel = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
    Update\Python\Outputs\ocr11\master files 2\extracted_data_SCC_3.xlsx"
 7
    parcel excel = r"C:\Well Layer Update\GIS\data tables\Parcels.xlsx"
    output excel = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
    Update\Python\Outputs\ocr11\master files 2\OCR(SCC1)_3.xlsx"
    unique excel = r"C:\Well Layer Update\Python\Scripts\unique values.xlsx"
9
10
11
    def clean well id(raw):
12
        if pd.isna(raw):
13
            return ""
14
15
        original = str(raw).strip()
16
        # Convert 'c' or 'C' to 'e' at the start
        if original.lower().startswith('c'):
17
18
            original = 'e' + original[1:]
        original = re.sub(r'[00]', '0', original)
19
        cleaned = original.replace(" ", "").upper().strip()
20
21
        # Handle well IDs starting with E/e
22
23
        if original.lower().startswith('e'):
24
            temp = original.lower().replace('o', '0').upper()
25
            match = re.match(r"^(E)(\d{7,8})(.*)", temp)
26
            if match:
27
                prefix = match.group(1)
                digits = match.group(2)
28
29
                return prefix + digits
30
            digits_after_e = re.sub(r"\D", "", temp[1:])
            if 6 <= len(digits after e) <= 8:</pre>
31
32
                return "E" + digits_after_e
33
            digits match = re.match(r"^(E)(\d+)", temp)
34
            if digits_match:
35
                return digits_match.group(1) + digits_match.group(2)
36
            return temp
37
38
        # Preserve WCR-formatted IDs
39
        if re.match(r"^WCR\d{4}-\d{6}$", cleaned):
40
            return cleaned
41
42
        # Fallback cleanup for non-WCR values
43
        text = original.lower().replace(",", "").replace("no.", "").replace("/", " ")
        text = re.sub(r"[\s\n\r]+", " ", text).strip()
44
45
46
        # Check for date-like prefix (e.g., MM-DD-YYYY or MM.DD.YYYY)
```

```
47
        match = re.match(r"^(\d{1,2})[\.-](\d{1,2})[\.-](\d{2,4})(\d{5,7})$", text)
48
        if match:
49
            year_str = match.group(3)
50
            trv:
51
                year = int(year_str)
52
                if year < 100:
53
                    year += 1900 if year >= 35 else 2000
                if 1935 <= year <= 2025:
54
55
                    return match.group(4)
56
            except ValueError:
57
                pass
58
59
        # Remove date-like prefix if present
60
        prefix_removed = re.sub(r"^\d{1,2}[\.-]\d{1,2}[\.-]\d{2,4}", "", text).strip()
        segments = re.split(r"[\s]+", prefix_removed)
61
62
        #Collect all digit sequences (5-8 digits) from segments
63
        all segment digits = []
64
65
        for segment in segments:
            segment_digits = re.findall(r'' \d{5,8}'', segment)
66
67
            all segment digits.extend(segment digits)
68
        if all_segment_digits:
69
70
            # If multiple sequences, prefer the last one unless an earlier one i longer
            longest = max(all_segment_digits, key=len)
71
72
            last segment digits = [d \text{ for } d \text{ in } re.findall(r"\d{5,8}", segments[-1])] if segments
    else []
            if last_segment_digits and len(max(last_segment_digits, key=len, default="")) >=
73
    len(longest) - 1:
74
                return max(last segment digits, key=len)
75
            return longest
76
77
        # Global fallback for any remaining digit sequences
        digits = re.findall(r"\d{5,8}", text)
78
79
        if digits:
80
            return max(digits, key=len)
81
82
        return ""
83
   # Load OCR Extracted Data
84
    df = pd.read excel(input excel, dtype=str).fillna("")
85
86
87
    # Load unique values for fuzzy matching
88
   unique df = pd.read excel(unique excel, header=None)
89
    field_names = ['city', 'driller_name', 'drilling_method', 'fluid', 'test_type']
   uniques dict = {}
90
    for idx, field in enumerate(field_names):
91
92
        col_data = unique_df[idx].dropna().tolist()
93
        if col data:
94
            uniques_dict[field] = col_data[1:] # Skip the first row (label)
```

```
95
96
    #Map to df column names (lowercase as per input)
97
     col map = {
98
         'city': 'city',
99
         'driller_name': 'contractor',
100
         'drilling_method': 'drilling_method',
         'fluid': 'fluid',
101
         'test_type': 'test_type'
102
103
104
105
     # Clean each field using fuzzy matching to unique values, appending score for non-exact
     matches or '(no match)' if no match found
     for field, col in col_map.items():
106
107
         if col in df.columns:
108
             def clean val(val):
109
                 if pd.isna(val) or not str(val).strip():
110
                     return val
                 val_str = str(val).strip().lower()
111
112
                 choices = uniques_dict.get(field, [])
113
                 if not choices:
114
                     return val str
                 choices_lower = [str(c).strip().lower() for c in choices]
115
                 choices map = dict(zip(choices lower, choices))
116
                 if val_str in choices_lower:
117
                     return choices map[val str]
118
                 result = process.extractOne(val_str, choices_lower, scorer=fuzz.partial_ratio)
119
120
                 if result:
                     match_lower, score, _ = result
121
                     if score >= 70:
122
123
                         return f"{choices_map.get(match_lower, match_lower)} (score={score})"
                 return f"{val str} (no match)"
124
125
             df[col] = df[col].apply(clean_val)
126
     # Column names
127
    APN_COL = "apn"
128
129
    ADDR COL = "address"
130
    FALLBACK_ADDR_COL = "owner_address"
131
     LOC_DESC_COL = "location_details"
132
    TEMPLATE ID COL = "revision cleaned"
133
134
    # Define template signatures
135
    TEMPLATE SIGNATURES = {
         "Template 1": ['1197', '790', '0503'],
136
         "Template 2": ['965', '905', '968', '958', '969', '960', '246354', '354', '554', '154',
137
     '334', '384', '954', '304', '254', '454', '568', '934', '87649354', '87028354'],
         "Template 3": ['776', '1286', '1288', '775', '778', '7741'],
138
         "Template 4": ['46170', '46370'],
139
140
         "Template 5": ['115', '118', '113', '119'],
         "Template 6": ['246', '2467'],
141
         "Template 7": ['263', '253', '2634764'],
142
```

```
143
         "Template 8": ['188'],
         "Template 9": ['1200', '12008', '112006', '12006', '12000', '12000', '12009', '10008',
144
     '40008'1
145
     }
146
147
     DATE SIGNATURES = {
         "Template 8": ['12/19/2017'],
148
         "Template 9": ['1/2006', '1/2008', '1/2000', '1/2005']
149
150
     }
151
152
     flat signature map = [(val, template) for template, vals in TEMPLATE SIGNATURES.items() for
     val in vals]
153
154
     flat date signature map = [(val, template) for template, vals in DATE SIGNATURES.items() for
     val in vals]
155
156
    def preprocess_apn(apn):
157
         apn = str(apn).strip()
158
         if '\n' in apn:
159
             parts = [p.strip() for p in apn.split('\n') if p.strip()]
             if len(parts) == 3 and all(p.isdigit() for p in parts):
160
                 first, second, third = parts
161
                 if len(third) > len(second):
162
                     second, third = third, second
163
                 return '-'.join([first, second, third])
164
         return apn
165
166
167
     def clean_apn_format(apn):
         if not isinstance(apn, str):
168
             return ""
169
170
171
         apn = preprocess apn(apn)
172
173
         # Remove all non-digit characters
         digits = re.sub(r"\D", "", apn)
174
175
176
         # Expecting 8 digits (3+3+2 format)
177
         if len(digits) == 8:
178
             return f"{digits[:3]}-{digits[3:6]}-{digits[6:]}"
179
180
         # Sometimes 7-digit (e.g., missing leading 0 in first section)
181
         elif len(digits) == 7:
             return f"{digits[:2].zfill(3)}-{digits[2:5]}-{digits[5:].zfill(2)}"
182
183
184
         # Other cases invalid
         return ""
185
186
187
     def clean revision(value):
188
         if pd.isna(value) or not str(value).strip():
             return ""
189
190
         value = str(value).strip()
```

```
191
         # Check for date-like patterns
192
         date_patterns = [
193
             r"^{d{1,2}/d{1,2}/d{4}}", # MM/DD/YYYY or M/D/YYYY
194
             r"^{d{1,2}-d{1,2}-d{4}}", # MM-DD-YYYY or M-D-YYYY
195
             r"^d{1,2}/d{4}$",
                                          # M/YYYY or MM/YYYY
196
             r''^d{1,2}-d{4}"
                                          # M-YYYY or MM-YYYY
197
         for pattern in date patterns:
198
199
             if re.match(pattern, value):
200
                 return value # Return original string if it's a date
201
         # Otherwise, strip all non-digit characters and newlines
         digits = re.sub(r"\D", "", value)
202
203
         return digits
204
     def identify template(row):
205
         text = row.get(TEMPLATE_ID_COL, "")
206
207
         if not isinstance(text, str) or not text.strip():
             return "Unknown"
208
209
         # First check for date signatures (exact match)
         for val, template in flat_date_signature_map:
210
             if text == val:
211
212
                 return template
213
         # Then check for numeric signatures (fuzzy match)
         match, score, = process.extractOne(
214
             text.strip(), [val for val, _ in flat_signature_map], scorer=fuzz.token_sort_ratio
215
216
         if score >= 80:
217
218
             for val, template in flat signature map:
219
                 if match == val:
220
                     return template
221
         return "Unknown"
222
223
     #Create revision_cleaned column before template identification
224
     df["revision cleaned"] = df["revision"].apply(clean revision)
     df["template_id"] = df.apply(identify_template, axis=1)
225
226
227
     # Known baseline occurrences per template
228
    known_baselines = {
         "Template 1": 1, # DESTROY- (1)
229
         "Template 2": 2, # destruction- (1) + Destroying- (1)
230
         "Template 3": 2, # Destruction (1) + destruction- (1)
231
232
         "Template 6": 1, # abandoned (1)
233
         "Template 9": 1, # DESTROY- (1)
         "Template 4": 0,
234
235
         "Template 5": 0,
         "Template 7": 0,
236
         "Template 8": 0,
237
         "Unknown": 0
238
239
    }
240
```

```
# Baseline keywords per template (lowercase)
241
242
     baseline_keywords = {
243
         "Template 1": ['destroy'],
         "Template 2": ['destruction', 'destroying'],
244
245
         "Template 3": ['destruction'],
246
         "Template 6": ['abandoned'],
         "Template 9": ['destroy'],
247
         "Template 4": [],
248
         "Template 5": [],
249
         "Template 7": [],
250
251
         "Template 8": [],
         "Unknown": []
252
253
    }
254
255
     # Function to process additional destruction keywords and set keyword destruction well
     def enhance_destruction_detection(row):
256
         template = row['template_id']
257
         keywords str = row.get('additional destruction keywords', '')
258
259
         baseline_set = set(baseline_keywords.get(template, []))
         destruction_well = row.get('destruction_well', ':unselected:').strip()
260
261
         if not keywords str:
262
             row['additional destruction keywords'] = ''
263
             row['keyword destruction well'] = destruction well
264
265
             return row
266
         # Split into list, strip spaces and lowercase for comparison
267
268
         keyword_list = [kw.strip().lower() for kw in keywords_str.split(',')]
269
270
         # Filter out 'instruction' or items starting with 'instruction'
         filtered_list = [kw for kw in keyword_list if not kw.startswith('instruction')]
271
272
273
         # Mark keywords based on template
274
         marked list = []
275
         if template == "Unknown":
276
             marked_list = [f"{kw} (unknown)" for kw in filtered_list]
277
         else:
             for kw in filtered_list:
278
279
                 if kw in baseline set:
                     marked list.append(f"{kw} (baseline)")
280
281
                 else:
282
                     marked list.append(kw)
283
         # Update the column to cleaned/marked string
284
         row['additional_destruction_keywords'] = ', '.join(marked_list)
285
286
287
         # Set keyword_destruction_well: default to destruction_well
         row['keyword destruction well'] = destruction well
288
289
```

```
# For known templates, override to :selected: if keyword count exceeds baseline and
290
     destruction_well is :unselected:
291
         if template != "Unknown":
             total_keyword_count = len(filtered_list)
292
293
             baseline_count = known_baselines.get(template, 0)
             if total keyword count > baseline count and destruction well == ":unselected:":
294
                 row['keyword_destruction_well'] = ':selected:'
295
                 # Unset other fields
296
                 for field in ['deepen well', 'recondition other.', 'domestic well',
297
     'irrigation well',
                                'public_well', 'monitoring_well', 'industrial_well', 'other_well',
298
299
                               'new well', 'test well']:
                     row[field] = ':unselected:'
300
301
302
         return row
303
    # Apply the enhancement after template_id is set
304
305
     df = df.apply(enhance destruction detection, axis=1)
306
307
     # Normalize other_well_no for Template 6 and merge duplicates
     def normalize other well no(val):
308
309
         if not isinstance(val, str):
310
311
         return re.sub(r"[^\w]", "", val).upper() # Remove all non-alphanumeric characters and
     uppercase
312
313
    # Only process Template 6
314
    template6_df = df[df["template_id"] == "Template 6"].copy()
    template6 df["other well no normalized"] =
315
     template6_df["other_well_no"].apply(normalize_other_well_no)
316
317
    # Group by normalized other_well_no and merge fields
    merged template6 = (
318
         template6 df.groupby("other well no normalized", as index=False)
319
         .agg(lambda x: next((i for i in x if i.strip()), "") if x.dtype == "0" else x.iloc[0])
320
321
    )
322
323
    # Drop duplicates in original df
    df = df[df["template id"] != "Template 6"]
324
325
    # Append merged template6 records back
326
    df = pd.concat([df, merged_template6], ignore_index=True)
327
328
329
    # Load Casings Sheet
330
    casings df = pd.read excel(input excel, sheet name="Casings", dtype=str).fillna("")
    casings_df["row_index"] = casings_df["row_index"].astype(int)
331
     casings df["top"] = casings df["top"].astype(str)
332
    casings df["bottom"] = casings df["bottom"].astype(str)
333
334
    def clean_to_digits(value, is_top=False):
335
         if pd.isna(value) or not str(value).strip():
336
```

```
337
             return None
338
         # Extract the first sequence of digits before a non-digit character
339
         match = re.match(r"^\d+", str(value).strip())
         if match:
340
341
             cleaned = match.group(0)
342
             if not cleaned.isdigit():
                 return None
343
             result = int(cleaned)
344
             # For top values > 999 ending with '0', strip the trailing '0'
345
             if is top and result > 999 and cleaned.endswith('0'):
346
347
                 result = int(cleaned[:-1]) # Remove the last digit ('0')
348
             return result
349
         return None
350
351
    def extract perforation fields(row):
352
         template = row.get("template_id")
         source_file = row.get("source_file", "").strip()
353
354
355
         if template == "Template 1":
356
             selected rows = []
357
             for i in range(1, 7):
                 colname = f"template1 screen row{i}"
358
                 if row.get(colname, "").strip() == ":selected:":
359
                     selected_rows.append(i)
360
361
362
             if not selected rows:
363
                 return pd.Series({"perforation_interval": "", "top_perforations": "",
     "bottom perforations": ""})
364
             matches = casings df[
365
                 (casings df["source file"] == source file) &
366
367
                 (casings_df["row_index"].isin(selected_rows))
             1.copy()
368
369
370
             if matches.empty:
                 return pd.Series({"perforation interval": "", "top perforations": "",
371
     "bottom_perforations": ""})
372
             matches["top_cleaned"] = matches["top"].apply(lambda x: clean_to_digits(x,
373
     is top=True))
374
             matches["bottom_cleaned"] = matches["bottom"].apply(clean_to_digits)
375
             top = matches["top cleaned"].min()
376
             bottom = matches["bottom_cleaned"].max()
377
378
             if pd.isna(top) or pd.isna(bottom):
379
380
                 return pd.Series({"perforation_interval": "", "top_perforations": "",
     "bottom perforations": ""})
381
382
             # Check if bottom is less than top
383
             if bottom < top:</pre>
```

```
384
                 return pd.Series({
385
                      "perforation_interval": "",
386
                     "top perforations": top,
                      "bottom perforations": ""
387
388
                 })
389
390
             return pd.Series({
                 "perforation_interval": f"{top} - {bottom}",
391
                 "top perforations": top,
392
                 "bottom perforations": bottom
393
394
             })
395
396
         elif template in {"Template 2", "Template 3", "Template 4", "Template 6", "Template 8",
     "Template 9", "Unknown"}:
             filtered = casings df[casings df["source file"] == source file].copy()
397
398
399
             if template in {"Template 8", "Template 9"}:
400
                 if template == "Template 8":
401
                     has_empty_type = (filtered["type"] == "").any()
402
                     if has_empty_type:
403
                          # Misidentified Template 8: process all rows (like Templates 2, 3, 4, 6,
     Unknown)
404
                          pass
                     else:
405
                          # True Template 8: only "Screen" rows
406
                          filtered = filtered[filtered["type"] == "Screen"]
407
408
                 elif template == "Template 9":
                     filtered = filtered[filtered["type"] == "Screen"]
409
410
             if filtered.empty:
411
                 return pd.Series({"perforation_interval": "", "top_perforations": "",
412
     "bottom_perforations": ""})
413
414
             filtered["top_cleaned"] = filtered["top"].apply(lambda x: clean_to_digits(x,
     is_top=True))
             filtered["bottom_cleaned"] = filtered["bottom"].apply(clean_to_digits)
415
416
417
             filtered = filtered[
                 (filtered["top cleaned"].notnull()) &
418
419
                 (filtered["bottom cleaned"].notnull()) &
                 (filtered["bottom_cleaned"] < 2000)</pre>
420
421
             1
422
423
             if filtered.empty:
424
                 return pd.Series({"perforation interval": "", "top perforations": "",
     "bottom perforations": ""})
425
             top_row = filtered.loc[filtered["row_index"].idxmin()]
426
             bottom_row = filtered.loc[filtered["row_index"].idxmax()]
427
428
429
             top = top_row["top_cleaned"]
```

```
430
             bottom = bottom row["bottom cleaned"]
431
432
             if top is None or bottom is None:
                  return pd.Series({"perforation_interval": "", "top_perforations": "",
433
     "bottom perforations": ""})
434
435
             # Check if bottom is less than top
436
             if bottom < top:</pre>
437
                  return pd.Series({
438
                      "perforation_interval": "",
439
                      "top perforations": top,
                      "bottom perforations": ""
440
441
                  })
442
             return pd.Series({
443
444
                  "perforation_interval": f"{top} - {bottom}",
445
                  "top perforations": top,
446
                  "bottom_perforations": bottom
447
             })
448
         elif template == "Template 5":
449
             raw_text = row.get("perforations_template5", "")
450
451
             if not raw text.strip():
452
                  return pd.Series({"perforation_interval": "", "top_perforations": "",
     "bottom_perforations": ""})
453
             ranges = re.findall(r"(\d{2,4})\s^{--}\s^{(\d{2,4})}", raw_text)
454
             numbers = []
455
456
457
             for start, end in ranges:
458
                  try:
459
                      start_int = int(start)
                      end int = int(end)
460
                      if 10 < start_int < 2000 and 10 < end_int < 2000:</pre>
461
462
                          numbers.extend([start_int, end_int])
463
                  except ValueError:
464
                      continue
465
             singles = re.findall(r"\b(\d{2,4})\b", raw_text)
466
             for val in singles:
467
468
                  try:
                      num = int(val)
469
470
                      if 10 < num < 2000:
471
                          numbers.append(num)
                  except ValueError:
472
                      continue
473
474
475
             if numbers:
476
                  top = min(numbers)
477
                  bottom = max(numbers)
```

```
478
                  # Check if bottom is less than top
479
                  if bottom < top:</pre>
480
                       return pd.Series({
                           "perforation_interval": "",
481
482
                           "top_perforations": top,
483
                           "bottom perforations": ""
484
                       })
                  return pd.Series({
485
                       "perforation_interval": f"{top} - {bottom}",
486
                       "top perforations": top,
487
488
                       "bottom_perforations": bottom
489
                  })
490
              return pd.Series({"perforation_interval": "", "top_perforations": "",
491
     "bottom perforations": ""})
492
493
          elif template == "Template 7":
              raw_text = row.get("perforations_template7", "")
494
495
              if not raw text.strip():
                  return pd.Series({"perforation interval": "", "top perforations": "",
496
     "bottom_perforations": ""})
497
498
              ranges = re.findall(r''(\d{2,4})\s^*[--]\s^*(\d{2,4})'', raw_text)
              singles = re.findall(r'' \setminus b(\setminus d\{2,4\}) \setminus b'', raw text)
499
500
              numbers = []
501
502
              for start, end in ranges:
503
                  try:
504
                       start_int = int(start)
505
                       end int = int(end)
506
                       if 10 < start_int < 2000 and 10 < end_int < 2000:</pre>
                           numbers.extend([start_int, end_int])
507
                  except ValueError:
508
                       continue
509
510
511
              for val in singles:
512
                  try:
                       num = int(val)
513
                       if 10 < num < 2000:
514
515
                           numbers.append(num)
                  except ValueError:
516
517
                       continue
518
519
              if numbers:
520
                  top = min(numbers)
                  bottom = max(numbers)
521
                  # Check if bottom is less than top
522
523
                  if bottom < top:</pre>
524
                       return pd.Series({
525
                           "perforation_interval": "",
```

```
526
                          "top perforations": top,
                          "bottom perforations": ""
527
528
                     })
                 return pd.Series({
529
530
                     "perforation_interval": f"{top} - {bottom}",
531
                     "top perforations": top,
532
                     "bottom perforations": bottom
                 })
533
534
             return pd.Series({"perforation interval": "", "top perforations": "",
535
     "bottom perforations": ""})
536
537
         return pd.Series({"perforation_interval": "", "top_perforations": "",
     "bottom perforations": ""})
538
     df[["perforation interval", "top perforations", "bottom perforations"]] =
539
     df.apply(extract_perforation_fields, axis=1)
540
541
    # Clean Well ID
542
     df["well_id_cleaned"] = df.iloc[:, 0].apply(clean_well_id)
543
544
     # Extract potential APN pattern from a text string
545
     def extract_apn_from_text(text):
         if not isinstance(text, str):
546
547
             return ""
548
         text = text.upper().strip()
549
550
         text = text.replace("\n", " ").replace("APN#", "APN").replace("A.P.N.", "APN")
551
552
         match = re.search(r"\b(\d{2,3}-\d{3}-\d{2}[A-Z]?)\b", text)
553
         if match:
554
             return match.group(1)
555
         return ""
556
557
     def fallback apn with source(row):
         apn raw = str(row.get(APN COL, "")).strip()
558
         apn_digits = clean_apn_format(apn_raw)
559
560
561
         if apn digits:
             return apn_digits.zfill(7), "Original APN field"
562
563
564
         apn_candidate = extract_apn_from_text(row.get("location_details", ""))
         source = "location details"
565
566
567
         if not apn candidate:
568
             apn_candidate = extract_apn_from_text(row.get("owner_well_id", ""))
569
             source = "owner_well_id"
570
571
         if apn candidate:
572
             digits only = clean apn format(apn candidate)
             return digits_only.zfill(7), f"Extracted from {source}"
573
```

```
574
         return "", "No APN found"
575
576
     df[["apn cleaned", "apn cleaned source"]] = df.apply(fallback apn with source, axis=1,
577
     result_type="expand")
578
     # Define cleaning function for pump_test_length
579
580
     def clean_pump_test_length(value):
         if pd.isna(value) or not str(value).strip():
581
             return ""
582
583
         value = str(value).strip()
584
585
586
         # Return empty string if slash is present
         if '/' in value:
587
             return ""
588
589
590
         # Remove any digits (and subsequent characters) after a non-digit, non-period character
         match = re.match(r'^[\d.]+', value)
591
592
         if not match:
             return ""
593
594
595
         cleaned = match.group(0)
596
597
         # Keep only digits and periods
         cleaned = re.sub(r'[^0-9.]', '', cleaned)
598
599
         # Ensure valid number format (remove multiple periods, trailing/leading periods)
600
         if cleaned.count('.') > 1:
601
             parts = cleaned.split('.')
602
             cleaned = parts[0] + '.' + ''.join(parts[1:])
603
604
         cleaned = cleaned.strip('.')
605
606
         # Return empty string if result is empty or invalid
607
         return cleaned if cleaned and cleaned != '.' else ""
608
609
     numeric_columns = {
610
         "water_static": "water_static_cleaned",
         "depth well": "depth well cleaned",
611
612
         "yield": "yield_cleaned",
         "seal": "seal cleaned",
613
         "first_water": "first_water_cleaned",
614
         "total_depth": "total_depth_cleaned",
615
616
         "lat": "lat cleaned",
         "long": "long_cleaned",
617
         "pump_test_length": "pump_test_length_cleaned"
618
619
620
621
    def clean_numeric_field(value):
622
         if not isinstance(value, str):
```

```
623
             value = str(value)
624
625
         value = value.strip().lower()
626
627
         # Handle newline: keep only the first number before the newline
628
         if '\n' in value:
629
             value = value.split('\n')[0].strip()
630
631
         # Remove apostrophe and any digits following it
         value = re.sub(r"'\s*\d*(\"|''|')?", "", value)
632
633
         value = re.sub(r'^[^\d]+', '', value)
634
                                                     #Remove non-digit prefix
635
         value = re.sub(r'[^\d]+\$', '', value)
636
         range_pattern = r"^\s*(\d+(?:\.\d+)?)\s*(?:[--]|to|t)\s*(\d+(?:\.\d+)?)\s*$"
637
638
         range_match = re.match(range_pattern, value)
639
         if range_match:
640
             try:
641
                 num1 = float(range_match.group(1))
642
                 num2 = float(range match.group(2))
643
                 avg = (num1 + num2) / 2
                 return f"{avg:.2f}".rstrip('0').rstrip('.')
644
645
             except ValueError:
646
                 pass
647
         value = re.sub(r'(?<=\d),(?=\d)', '.', value)
648
649
         value = re.sub(r'[^0-9.]', '', value)
650
         if value.count('.') > 1:
651
             parts = value.split('.')
652
             value = parts[0] + '.' + ''.join(parts[1:])
653
654
655
         return value
656
657
     for colname, new_col in numeric_columns.items():
         if colname == "pump_test_length":
658
             df[new_col] = df[colname].apply(clean_pump_test_length)
659
         else:
660
             df[new_col] = df[colname].apply(clean_numeric_field)
661
662
663
664
     # Initialize qa_flag column
665
     df['depths flag'] = ''
666
667
     # Only check rows where both fields are non-empty
     mask = (df['total_depth_cleaned'] != '') & (df['depth_well_cleaned'] != '')
668
669
    # Apply logic: if total_depth < depth_well → flag 'review depths'
670
671 df.loc[mask, 'depths_flag'] = df.loc[mask].apply(
```

```
lambda row: 'review depths' if float(row['total depth cleaned']) <</pre>
672
     float(row['depth_well_cleaned']) else '',
673
         axis=1
674
     )
675
676
677
     # Load and structure alias dictionary
678
     alias_df = pd.read_excel(r"C:\Well Layer Update\GIS\data_tables\street_names_with_al-
     iases.xlsx").fillna("")
679
     alias dict = {}
680
    for _, row in alias_df.iterrows():
         canonical = row['canonical_name'].strip().upper()
681
682
         for alias in str(row['alias']).split(";"):
             alias = alias.strip().upper()
683
684
             if alias:
685
                 alias dict[alias] = canonical
686
     for canonical in alias_df["canonical_name"].unique():
687
688
         canonical = canonical.strip().upper()
         alias_dict[canonical] = canonical
689
690
     street keywords = set(alias dict.keys())
691
692
     def extract_address_from_location(desc):
693
694
         if not isinstance(desc, str):
             return ""
695
696
         desc = desc.upper()
         desc = re.sub(r"[^\w\s]", " ", desc)
697
698
         desc = re.sub(r"\s+", " ", desc).strip()
699
         if re.search(r"\b(UTM|TOPO|SHEET|1[:;,\.]?62[,\.]?
700
     500 GRID QUAD COORDINATE LAT LONG MAP \b", desc):
             return ""
701
702
         if re.search(r"\b\d{1,5}\s*(FEET|FT|YARDS|MILES?)\b", desc):
703
             return ""
704
705
706
         tokens = desc.split()
707
         num_tokens = len(tokens)
708
709
         for i in range(num_tokens):
710
             for j in range(1, 5):
711
                 if i + j > num_tokens:
712
                     continue
713
                 candidate_tokens = tokens[i:i + j]
                 candidate = " ".join(candidate_tokens)
714
715
                 if candidate in street_keywords:
                     canonical = alias_dict.get(candidate, candidate)
716
717
                     if i > 0 and re.fullmatch(r"\d{2,6}", tokens[i - 1]):
718
                          return f"{tokens[i - 1]} {canonical}"
719
                     else:
```

```
720
                         return canonical
721
722
         for i in range(num tokens):
723
             for j in range(1, 5):
724
                 if i + j > num_tokens:
725
                     continue
                 candidate tokens = tokens[i:i + j]
726
                 candidate = " ".join(candidate_tokens)
727
                 best_match, score, _ = process.extractOne(
728
729
                     candidate,
730
                     list(street_keywords),
731
                     scorer=fuzz.token sort ratio
732
                 )
733
                 if score >= 85:
734
                     canonical = alias dict.get(best match, best match)
                     if i > 0 and re.fullmatch(r"\d{2,6}", tokens[i - 1]):
735
                         return f"{tokens[i - 1]} {canonical}"
736
737
                     else:
738
                         return canonical
739
740
         return ""
741
    def resolve_address_with_source(row):
742
         addr = str(row.get(ADDR_COL, "")).strip()
743
         fallback = str(row.get(FALLBACK_ADDR_COL, "")).strip()
744
         loc extracted = extract address from location(row.get(LOC DESC COL, ""))
745
746
         fallback_keywords = ["same", "dame", "come", "came", "some", "sama", "same as above"]
747
         if any(fuzz.ratio(addr.lower(), word) >= 80 for word in fallback_keywords):
748
749
             return fallback, "Fallback address (approximate 'same')"
750
         if addr:
751
752
             return addr, "Direct address"
753
         if loc extracted:
754
             return loc_extracted, "Extracted from location description"
755
         if fallback:
             return fallback, "Fallback address (owners)"
756
         return "", "No address available"
757
758
759
     def strip city and zip(address):
760
         if not address:
761
             return address
762
763
         cities = [
             "APTOS", "BEN LOMOND", "BOULDER CREEK", "CAPITOLA", "DAVENPORT",
764
             "LOS GATOS", "SANTA CRUZ", "SCOTTS VALLEY", "SOQUEL", "WATSONVILLE"
765
766
767
         address = address.upper()
768
769
         house_number_match = re.match(r"^\d+\s+", address)
```

```
770
         if not house number match:
771
             return address
772
773
         start = house number match.end()
774
         post_number = address[start:]
775
         tokens = post number.split()
776
         retained tokens = tokens[:1]
777
         remaining_tokens = tokens[1:]
778
779
         for idx, token in enumerate(remaining tokens):
780
             joined = " ".join([*retained_tokens, *remaining_tokens[:idx + 1]])
781
             for city in cities:
782
                 if city in joined:
783
                     return address[:address.upper().find(city)].strip()
784
785
         return address
786
787
     def clean for matching(addr):
788
         if not addr:
789
             return ""
790
         addr = addr.upper()
         addr = re.sub(r"\s*\n\s*", ", addr)
791
         addr = re.sub(r"\s+", " ", addr).strip()
792
793
         remove_keywords = [
794
             "P.O. BOX", "PO BOX", "O. BOX", "P.O.", "PO", "BOX", "PABOX", "DRAWER",
795
796
             "ABOVE", "OFF", "MAP", "MAPSHEET", "APN", "NO ADDRESS", "END OF", "ENDOF",
             "PART OF", "P/R", "SUITE", "C/O", "SHOPS", "NOTA", "WIR", "EX", "FEET NORTH OF"
797
798
799
         for keyword in remove keywords:
800
             addr = re.sub(rf"\b{re.escape(keyword)}\b", "", addr)
801
         ocr_fixes = {
802
             r"\bARE\b": "AVE", r"\bSTH\b": "ST", r"\bDRI\b": "DR", r"5T": "ST",
803
804
             r"\bOAK STREE\b": "OAK ST", r"(\d)O(\d)": r"\1 0 \2",
             r"\bMOUNT\b": "MT", r"\bM\b": "MT", r"\bR\b": "RD",
805
             r"\bDRIE\b": "DR", r"\bQUINET\b": "QUINNETTE", r"\bJANE\b": "LANE",
806
             r"\bCEUK\b": "CREEEK", r"\bTHNY\b": "TWINY", r"\bELTON\b": "FELTON",
807
             r"\bBENLOMOND\b": "BEN LOMOND", r"\bBENLAMIND\b": "BEN LOMOND",
808
             r"\bBEN SOMAND\b": "BEN LOMOND", r"\bBEN HOWARD\b": "BEN LOMOND",
809
             r"\bBONNY DOON\b": "BONNY DOON", r"\bBUNNY DOON\b": "BONNY DOON",
810
811
             r"\bBROOKDALE\b": "", r"\bSANTACRUZ\b": "SANTA CRUZ",
812
             r"\bSANTACURZ\b": "SANTA CRUZ", r"\bCUPERTING\b": "CUPERTINO",
             r"\bROALND\b": "ROLAND", r"\bZIMT\b": "", r"\bHERMOURA\b": "HERMOSA",
813
             r"\bDALTON\b": "", r"\bSA\b": "CA", r"\bCALIFÓRNIA\b": "CA",
814
             r"\bCALLIL\b": "CA", r"\bCALIF\b": "CA", r"\bCALL\b": "CA", r"\bCAO\b": "CA",
815
816
             r"\bCAMILLA\b": "CAMPBELL", r"\bLETT?S VALLY\b": "LETTS VALLEY",
             r"\bENGINE GRADE\b": "EMPIRE GRADE", r"\bFORMAND\b": "LOMOND",
817
             r"\bSTREEL\b": "STREET", r"\bARE\b": "AVE", r"\bMa\b": "MA", r"\ba\b": "A"
818
819
         }
```

```
for pattern, replacement in ocr fixes.items():
820
             addr = re.sub(pattern, replacement, addr)
821
822
         addr = re.sub(r"^(WELL( SITE | HEAD | SA | LOCATION | HOUSE)? | ADDRESS | LOCATED AT | NEAR | NEXT
823
     TO ADJACENT TO BEHIND ADJOINING)\s+", "", addr)
824
825
         replacements = {
             "STREET": "ST", "AVENUE": "AVE", "ROAD": "RD", "DRIVE": "DR",
826
             " BOULEVARD": " BLVD", " MOUNT ": " MT ", " HIGHWAY": " HWY".
827
             " LANE": " LN", " COURT": " CT", " PLACE": " PL", " TERRACE": " TER",
828
             " CIRCLE": " CIR", " TRAIL": " TRL", " CREEK": " CRK", " WAY": " WAY"
829
830
         for k, v in replacements.items():
831
832
             addr = addr.replace(k, v)
833
834
         addr = re.sub(r"\s+[A-Z\s]*\sCA\s\d\{5,6\}$", "", addr)
835
         addr = re.sub(r"[^\w\s]+$", "", addr)
         addr = re.sub(r"\b\w\b$", "", addr).strip()
836
837
         addr = strip city and zip(addr)
         return addr
838
839
    df[["address_raw", "address_source"]] = df.apply(lambda row: pd.Series(resolve_address_with-
840
     _source(row)), axis=1)
    df["address cleaned"] = df["address raw"].astype(str).apply(lambda x: x.splitlines()[0] if
841
     x.strip() else "").str.strip().str.upper()
842
    df["address_cleaned_for_matching"] = df["address_cleaned"].apply(clean_for_matching)
843
844
    # Load Parcel Data and Prepare Matching Columns
    parcels_df = pd.read_excel(parcel_excel, dtype=str).fillna("")
845
    parcels df.columns = parcels df.columns.str.lower()
846
     parcels df["clean apn"] = parcels df.iloc[:, 0]
847
     parcels df["clean address parcel"] = parcels df.iloc[:,
848
     13].astype(str).str.strip().str.upper()
    parcels_df["match_ready_address"] = parcels_df["clean_address_parcel"]
849
850
851
    apn_lookup = parcels_df.set_index("clean_apn")[["clean_address_parcel"]].to_dict("index")
852
853
    def fuzzy_address_lookup(addr):
854
         cleaned input = clean for matching(addr)
855
         if not cleaned input:
             return "", "", [], 0
856
857
         input_house_num = re.match(r"^(\d+)", cleaned_input)
858
859
         input_house_num = input_house_num.group(1) if input_house_num else ""
860
861
         matches = process.extract(
862
             cleaned input,
             parcels_df["match_ready_address"].tolist(),
863
864
             scorer=fuzz.token_sort_ratio,
865
             limit=30
866
```

```
867
868
         candidates_log = []
         best_row, best_score, best_dist = None, 0, float("inf")
869
870
871
         for match_text, score, idx in matches:
872
             row = parcels df.iloc[idx]
             match addr = row["clean address parcel"]
873
             match_num = re.match(r"^(\d+)", match_addr)
874
             match num = match num.group(1) if match num else ""
875
876
             dist = abs(int(input house num) - int(match num)) if input house num and match num
     else float("inf")
             candidates log.append(f"{match addr} (score={score}, dist={dist})")
877
878
879
             if score > best_score or (score == best_score and dist < best_dist):</pre>
                 best score, best dist = score, dist
880
881
                 best_row = row
882
883
         if best_row is not None:
884
             return best_row["clean_apn"], best_row["clean_address_parcel"], candidates_log,
     best_score
885
         return "", "", candidates_log, 0
886
887
888
     # Normalize well id cleaned for duplicate comparison (strip leading zeros)
889
     def normalize well id for comparison(well id):
         if not isinstance(well_id, str) or not well_id.strip():
890
891
             return ""
892
         # Remove leading zeros, but preserve the rest of the ID (including 'E' prefix if
     present)
         if well id.startswith('E'):
893
894
             return 'E' + well_id[1:].lstrip('0')
895
         return well id.lstrip('0')
896
897
     # Remove Duplicates Based on well_id_cleaned and multiple fields, including all-empty
     matches
898
     def count_non_empty(row):
899
         """Count non-empty, non-whitespace fields in a row."""
900
         return sum(1 for val in row if isinstance(val, str) and val.strip() != "" or not
     pd.isna(val))
901
902
     # Add duplicate details column
     df['duplicate_exists'] = "No duplicates"
903
904
905
     # Add a column to count non-empty fields for each row
     df["non_empty_count"] = df.apply(count_non_empty, axis=1)
906
907
908
     # Add a column for normalized well_id_cleaned for duplicate comparison
     df["well_id_normalized"] = df["well_id_cleaned"].apply(normalize_well_id_for_comparison)
909
910
911
     # Identify duplicates based on normalized well id cleaned and any field match or all fields
```

```
912 fields to check = [
913
         "total_depth_cleaned",
914
         "depth well cleaned",
         "water static cleaned",
915
916
         "yield_cleaned",
917
         "seal cleaned",
         "first water cleaned",
918
         "permit date",
919
         "permit no",
920
         "date",
921
922
         "apn cleaned"
923
924
925
     # Filter for non-empty well id cleaned
     non empty well id mask = df["well id cleaned"].notna() & (df["well id cleaned"] != "")
926
     duplicates = pd.Series([False] * len(df), index=df.index)
927
928
     for field in fields_to_check:
929
         # Mark duplicates where normalized well id cleaned and field match, and both are non-
     empty
930
         mask = (
             df.duplicated(subset=["well_id_normalized", field], keep=False) &
931
             (df[field].notna() & (df[field] != "")) &
932
             non empty well id mask
933
934
         )
935
         duplicates |= mask
936
937
     # Add duplicates where all fields are empty for a given normalized well id cleaned
     all empty mask = df[fields to check].apply(lambda x: x.isna() | (x == "")).all(axis=1)
938
939
     all_empty_duplicates = (
         df[all_empty_mask & non_empty_well_id_mask].duplicated(subset=["well_id_normalized"],
940
     keep=False)
941
     duplicates |= all empty duplicates
942
943
944
     # Identify duplicate groups for logging
945
     duplicate_groups = df[duplicates & non_empty_well_id_mask][["well_id_normalized",
     "well_id_cleaned", "total_depth_cleaned", "depth_well_cleaned"]].drop_duplicates()
946
     print(f"Found {len(duplicate_groups)} groups of duplicates based on normalized
947
     well id cleaned and multiple fields or all fields empty")
948
    # Process each duplicate group
949
     records to keep = set()
950
951
    for _, group in duplicate_groups.iterrows():
952
         well id norm = group["well id normalized"]
953
         total_depth = group["total_depth_cleaned"]
         depth well = group["depth well cleaned"]
954
955
956
         # Get all records in this duplicate group (matching normalized well_id_cleaned and any
     field or all fields empty)
         group_records = df[
957
```

```
958
             (df["well id normalized"] == well id norm) & (
                 (df["total_depth_cleaned"] == total_depth) |
959
960
                 (df["depth well cleaned"] == depth well) |
                 (df["water static cleaned"] == df[df["well id normalized"] == well id norm]
961
     ["water static cleaned"].iloc[0]) |
                 (df["yield cleaned"] == df[df["well id normalized"] == well id norm]
962
     ["yield_cleaned"].iloc[0]) |
                 (df["seal cleaned"] == df[df["well id normalized"] == well id norm]
963
     ["seal_cleaned"].iloc[0]) |
                 (df["first water cleaned"] == df[df["well id normalized"] == well id norm]
964
     ["first_water_cleaned"].iloc[0]) |
                 (df["permit_date"] == df[df["well_id_normalized"] == well_id_norm]
965
     ["permit_date"].iloc[0]) |
                 (df["permit no"] == df[df["well id normalized"] == well id norm]
966
     ["permit_no"].iloc[0]) |
                 (df["date"] == df[df["well id normalized"] == well id norm]["date"].iloc[0]) |
967
                 (df["apn_cleaned"] == df[df["well id normalized"] == well id norm]
968
     ["apn cleaned"].iloc[0]) |
969
                 (
                     df[fields_{to\_check}].apply(lambda x: x.isna() | (x == "")).all(axis=1) &
970
971
                     (df["well id normalized"] == well id norm)
972
                 )
             ) & non_empty_well_id_mask
973
         1
974
975
976
         if len(group records) > 1:
977
             # Sort by non empty count (descending), then by source file (prefer newer or cleaner
     files)
             most_complete = group_records.sort_values(
978
979
                 by=["non_empty_count", "source_file"], ascending=[False, True]
980
             ).iloc[0]
981
             df.at[most_complete.name, 'duplicate_exists'] = "Duplicates deleted (matched depths,
     water static, yield, seal, first water, permit date, permit no, date, apn cleaned, or all
     fields empty, including leading zero variations)"
982
             records to keep.add(most complete.name)
983
         else:
             records_to_keep.add(group_records.index[0])
984
985
986
    # Keep non-duplicate records and the most complete record from each duplicate group
     non duplicates = df[~duplicates]
987
988
     duplicates to keep = df.loc[list(records to keep)]
989
     df = pd.concat([non duplicates, duplicates to keep], ignore index=True)
990
991
    # Ensure records with empty well_id_cleaned are marked as "No duplicates"
     df.loc[df["well_id_cleaned"].isna() | (df["well_id_cleaned"] == ""), "duplicate_exists"] =
992
     "No duplicates"
993
    # Flag distinct duplicates in the final DataFrame, excluding empty well_id_cleaned
994
     well id counts = df[df["well id cleaned"].notna() & (df["well id cleaned"] != "")]
995
     ["well_id_normalized"].value_counts()
    duplicate_well_ids = well_id_counts[well_id_counts > 1].index
```

```
997
 998
     for well_id_norm in duplicate_well_ids:
999
          mask = df["well id normalized"] == well id norm
          for idx in df[mask].index:
1000
1001
              current = df.at[idx, 'duplicate_exists']
1002
              if current == "No duplicates":
                  df.at[idx, 'duplicate exists'] = "Distinct duplicates exist (different depths,
1003
      water_static, yield, seal, first_water, permit_date, permit_no, date, apn_cleaned, and not
      all empty, including leading zero variations)"
              elif current == "Duplicates deleted (matched depths, water static, yield, seal,
1004
      first_water, permit_date, permit_no, date, apn_cleaned, or all fields empty, including
      leading zero variations)":
1005
                  df.at[idx, 'duplicate_exists'] = "Duplicates deleted (matched depths,
      water_static, yield, seal, first_water, permit_date, permit_no, date, apn_cleaned, or all
      fields empty, including leading zero variations) and distinct duplicates exist"
1006
1007
     # Drop temporary columns
1008
     df = df.drop(columns=["non_empty_count", "well_id_normalized"])
1009
1010
     # Verify no duplicates remain
1011
     remaining duplicates = df[
1012
          (df["well id cleaned"].notna() & (df["well id cleaned"] != "") ) & (
1013
              df.duplicated(subset=["well_id_cleaned", "total_depth_cleaned"], keep=False) |
              df.duplicated(subset=["well_id_cleaned", "depth_well_cleaned"], keep=False) |
1014
              df.duplicated(subset=["well_id_cleaned", "water_static_cleaned"], keep=False) |
1015
              df.duplicated(subset=["well_id_cleaned", "yield_cleaned"], keep=False) |
1016
              df.duplicated(subset=["well id cleaned", "seal cleaned"], keep=False) |
1017
              df.duplicated(subset=["well_id_cleaned", "first_water_cleaned"], keep=False) |
1018
              df.duplicated(subset=["well_id_cleaned", "permit_date"], keep=False) |
1019
              df.duplicated(subset=["well id cleaned", "permit no"], keep=False) |
1020
              df.duplicated(subset=["well_id_cleaned", "date"], keep=False) |
1021
1022
              df.duplicated(subset=["well_id_cleaned", "apn_cleaned"], keep=False) |
1023
              (
1024
                  df[fields_to_check].apply(lambda x: x.isna() | (x == "")).all(axis=1) &
                  df.duplicated(subset=["well_id_cleaned"], keep=False)
1025
1026
              )
1027
          )
1028
1029
     if not remaining_duplicates.empty:
1030
          print("flag: some duplicates remain")
          print(remaining duplicates[["well id cleaned", "total depth cleaned",
1031
      "depth_well_cleaned", "water_static_cleaned", "yield_cleaned", "seal_cleaned",
      "first_water_cleaned", "permit_date", "permit_no", "date", "apn_cleaned", "source_file"]])
1032
1033
          print("No duplicates remain.")
1034
1035
     # Fuzzy Matching Loop
1036
     final_apn, final_address, match_source, fuzzy_logs = [], [], []
1037
1038
     for i, (_, row) in enumerate(df.iterrows()):
1039
          print(f"Processing record {i + 1} of {len(df)}")
```

```
1040
          cleaned apn = row["apn cleaned"]
1041
          cleaned_addr = row["address_cleaned"]
1042
          source = row["address_source"]
1043
1044
          if cleaned_apn in apn_lookup:
1045
              final apn.append(cleaned apn)
1046
              final address.append(apn lookup[cleaned apn]["clean address parcel"])
1047
              match_source.append("APN matched")
              fuzzy logs.append("")
1048
1049
          else:
1050
              if source == "Extracted from location description":
                  fuzzy_threshold = 75
1051
              elif "Fallback address" in source:
1052
                  fuzzy threshold = 85
1053
1054
              else:
1055
                  fuzzy_threshold = 62
1056
              fuzzy apn, fuzzy addr, log, score = fuzzy address lookup(cleaned addr)
1057
1058
              if fuzzy_apn and score >= fuzzy_threshold:
1059
                  final apn.append(fuzzy apn)
1060
                  final address.append(fuzzy addr)
                  if "Fallback address" in source:
1061
                      match source.append(f"Owners address (fallback) matched (score {score})")
1062
1063
                  else:
                      match_source.append(f"Address matched (score {score})")
1064
1065
              else:
1066
                  final_apn.append(cleaned_apn)
1067
                  final address.append("")
                  match source.append("No match")
1068
              fuzzy_logs.append("; ".join(log))
1069
1070
      planned use columns = {
1071
          "domestic_well": "Domestic Well",
1072
          "irrigation well": "Irrigation Well",
1073
1074
          "public_well": "Public Supply Well",
          "monitoring_well": "Monitoring Well",
1075
1076
          "industrial well": "Industrial Well",
          "other_well": "Other Well",
1077
          "test_well": "Test Well"
1078
1079
1080
     def determine_planned_use(row):
1081
1082
          selected = [
              label for col, label in planned_use_columns.items()
1083
              if row.get(col, "").strip() == ":selected:"
1084
1085
1086
          if len(selected) == 1:
1087
              return selected[0]
1088
          elif len(selected) > 1:
1089
              return "Two or more uses/Possible Error from 'Confidential' Stamp"
```

```
1090
          else:
1091
              return "Other"
1092
      df["planned use former use"] = df.apply(determine planned use, axis=1)
1093
1094
1095
     type of work columns = {
1096
          "new well": "New Well",
1097
          "keyword_destruction_well": "Well Destruction",
          "deepen well": "Deepen Well",
1098
1099
          "replacement": "Replacement Well",
1100
          "recondition_other.": "Well Reconditioning/Other"
1101
1102
1103
     def determine_type_of_work(row):
1104
          selected = [
1105
              label for col, label in type_of_work_columns.items()
              if row.get(col, "").strip() == ":selected:"
1106
1107
1108
          if len(selected) == 1:
1109
              return selected[0]
1110
          elif len(selected) > 1:
              return "Two or more types"
1111
1112
          else:
1113
              return "Unknown"
1114
     df["Type of Work"] = df.apply(determine type of work, axis=1)
1115
1116
1117
      def map record type(type of work):
1118
          if type of work == "New Well":
              return "WellCompletion/New/Production or Monitoring/NA"
1119
1120
          elif type_of_work == "Unknown":
              return "Unknown"
1121
1122
          elif type_of_work in ["Drill and Destroy", "Destroy"]:
1123
              return "WellCompletion/Drill and Destroy/NA/NA"
1124
          elif type_of_work == "Well Destruction":
1125
              return "WellCompletion/Destruction/NA/NA"
1126
          elif type_of_work in ["Deepen Well", "Replacement Well", "Well Reconditioning/Other"]:
              return "WellCompletion/Modification or Repair/Production or Monitoring/NA"
1127
1128
          else:
              return "Unknown"
1129
1130
1131
     df["Record Type"] = df["Type of Work"].apply(map_record_type)
1132
     df["final_apn"] = final_apn
1133
1134
     df["final_address"] = final_address
     df["match_source"] = match_source
1135
1136
     df["fuzzy_candidates_log"] = fuzzy_logs
1137
1138
     df.loc[df["template_id"] == "Template 8", "planned_use_former_use"] =
      df.loc[df["template_id"] == "Template 8", "Planned Use"]
```

```
df.loc[df["template_id"] == "Template 8", "Type of Work"] = df.loc[df["template_id"] ==
    "Template 8", "Activity"]

df["Record Type"] = df["Type of Work"].apply(map_record_type)

df.to_excel(output_excel, index=False)
print(f"Cleaned data written to: {output_excel}")
```

C:\Well Layer Update\Python\Azure\Data Matching and Merging Script.py

```
import pandas as pd
2
   import re
 3
    from rapidfuzz import process, fuzz
4
    import logging
5
    import numpy as np
    from collections import defaultdict
6
7
8
   # === File paths ===
   file1 path = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
    Update\Python\Outputs\ocr11\master files 2\OCR(SCC1).xlsx"
   file2 path = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
10
    Update\Python\Outputs\ocr11\master files 2\DWR1.xlsx"
    file monterey = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
11
    Update\Python\Outputs\ocr11\master files 2\Well Completion Reports Monterey.xlsx"
   matched output = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
12
    Update\Python\Outputs\ocr11\excel 3\matched_output.xlsx"
    unmatched output = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
13
    Update\Python\Outputs\ocr11\excel 3\unmatched_output.xlsx"
    unmatched ocr output = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
    Update\Python\Outputs\ocr11\excel 3\unmatched_ocr_output.xlsx"
    unmatched dwr output = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
15
    Update\Python\Outputs\ocr11\excel 3\unmatched_dwr_output.xlsx"
    supplemented output path = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
16
    Update\Python\Outputs\ocr11\excel 3\matched_output_supplemented.xlsx"
17
    parcel excel = r"S:\Water Resources\1 Water Resources Program\GIS\Well Laver
    Update\Python\Outputs\ocr11\master files 2\Parcels.xlsx"
18
19
20
    # file1_path = r"S:\Water Resources\1_Water Resources Program\GIS\Well Layer
    Update\Python\Outputs\ocr11\master files 2\OCR(DWR1).xlsx"
    # file2 path = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
21
    Update\Python\Outputs\ocr11\excel 3\unmatched dwr output.xlsx"
   # file_monterey = r"s:\Water Resources\1_Water Resources Program\GIS\Well Layer
22
    Update\Python\Outputs\ocr11\master files 2\Well Completion Reports Monterey.xlsx"
23
    # matched output = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
    Update\Python\Outputs\ocr11\excel 3\unmatched dwr files\matched_output.xlsx"
24
   # unmatched output = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
   Update\Python\Outputs\ocr11\excel 3\unmatched dwr files\unmatched_output.xlsx"
    # unmatched_ocr_output = r"S:\Water Resources\1_Water Resources Program\GIS\Well Layer
25
    Update\Python\Outputs\ocr11\excel 3\unmatched dwr files\unmatched ocr output.xlsx"
26
    # unmatched dwr output = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
    Update\Python\Outputs\ocr11\excel 3\unmatched dwr files\unmatched_dwr_output.xlsx"
   # supplemented_output_path = r"S:\Water Resources\1_Water Resources Program\GIS\Well Layer
27
    Update\Python\Outputs\ocr11\excel 3\unmatched dwr files\matched output supplemented.xlsx"
    # parcel excel = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
28
   Update\Python\Outputs\ocr11\master files 2\Parcels.xlsx"
29
30
31
  #Load input datasets (OCR, DWR, Monterey, and parcel data) and preserve original match source
```

```
33 df1 = pd.read excel(file1 path)
34 df2 = pd.read_excel(file2_path)
35 df3 = pd.read excel(file monterey)
   parcels df = pd.read excel(parcel excel)
36
37
38
   if 'match source' in df1.columns:
39
        df1['ocr original match source'] = df1['match source']
40
    # Define helper function to clean and normalize well IDs
41
    def clean id(raw):
42
43
        if pd.isna(raw):
            return ""
44
45
        original = str(raw).strip()
46
        cleaned = original.replace(" ", "").upper().strip()
        # Convert 'c' to 'E' for IDs starting with 'c' or 'C'
47
        if cleaned.lower().startswith('c'):
48
            cleaned = 'E' + cleaned[1:]
49
        if re.match(r"^WCR\d{4}-\d{6}$", cleaned):
50
            return cleaned
51
52
        text = original.lower().replace(",", "")
        text = re.sub(r"no\.?", "", text)
53
        text = text.replace("/", " ")
54
        text = re.sub(r"[\s\n]+", " ", text)
55
        match = re.match(r"^(\d{1,2})[\.-](\d{1,2})[\.-](\d{3,8})$", text)
56
57
        if match:
58
            year str = match.group(3)
59
            try:
60
                year = int(year_str)
61
                if year < 100:
                    year += 1900 if year >= 35 else 2000
62
63
                if 1935 <= year <= 2025:
64
                    return match.group(4)
            except ValueError:
65
                pass
66
67
        prefix_removed = re.sub(r"^d{1,2}[..-]d{1,2}[..-]d{2,4}", "", text).strip()
        segments = re.split(r"[\s]+", prefix_removed)
68
        for segment in reversed(segments):
69
70
            segment_digits = re.findall(r"\d{3,8}", segment)
71
            if segment_digits:
72
                return segment digits[-1].lstrip('0')
73
        digits = re.findall(r"\d{3,8}", text)
74
        if digits:
75
            return digits[-1].lstrip('0')
76
        # Return cleaned ID if it starts with 'E' and has digits
        if cleaned.startswith('E') and any(c.isdigit() for c in cleaned[1:]):
77
78
            return cleaned
        return ""
79
80
   #Format APN strings to xxx-yyy-zz pattern for 8-digit APNs, consistent with SCC Parcel db
81
    def format_apn_with_dashes(apn_str):
```

```
83
         apn str = str(apn str).strip()
 84
         clean_apn = re.sub(r'\D', '', apn_str)
         if len(clean apn) == 8:
 85
             return f"{clean_apn[:3]}-{clean_apn[3:6]}-{clean_apn[6:]}"
86
 87
         else:
88
             return apn_str
89
90
     # Normalize parcel APNs by removing non-digits and zero-padding to 8 digits
     def normalize parcel apn(apn str):
91
         return re.sub(r"\D", "", str(apn str)).zfill(8)
92
93
94
     # Generate APN signature by keeping non-zero digits
95
     def apn_signature(apn):
96
         return ''.join([ch for ch in str(apn) if ch.isdigit() and ch != '0'])
97
98
     #Clean address strings for consistent matching
99
     def clean_for_matching(addr):
100
         if not isinstance(addr, str):
101
             addr = str(addr) if not pd.isna(addr) else ""
102
         addr = addr.upper()
         addr = addr.replace("(", "").replace(")", "")
103
         addr = re.sub(r"\bARE\b", "AVE", addr)
104
         addr = re.sub(r"\bSTH\b", "ST", addr)
105
         addr = re.sub(r"\bDRI\b", "DR", addr)
106
         addr = re.sub(r"\bMOUNT\b", "MT", addr)
107
         addr = re.sub(r"\bR\b", "RD", addr)
108
109
         addr = re.sub(r" STREET", " ST", addr)
         addr = re.sub(r" AVENUE", " AVE", addr)
110
         addr = re.sub(r" ROAD", " RD", addr)
111
         addr = re.sub(r" DRIVE", " DR", addr)
112
         addr = re.sub(r" LANE", " LN", addr)
113
         addr = re.sub(r" COURT", " CT", addr)
114
         addr = re.sub(r" PLACE", " PL", addr)
115
         addr = re.sub(r" TERRACE", " TER", addr)
116
117
         addr = re.sub(r" CIRCLE", " CIR", addr)
         addr = re.sub(r" TRAIL", " TRL", addr)
118
         addr = re.sub(r" CREEK", " CRK", addr)
119
         addr = re.sub(r" WAY", " WAY", addr)
120
         addr = re.sub(r"\s+[A-Z\s]*\sCA\s\d{5}$", "", addr)
121
         addr = re.sub(r"[^\w\s]+$", "", addr)
122
         addr = re.sub(r"\s+", " ", addr).strip()
123
124
         addr = re.sub(r"\b\w\b$", "", addr).strip()
125
         return addr
126
127
     # Normalize APN strings by removing non-digits and handling specific cases
     def normalize apn(apn str):
128
         digits = re.sub(r"\D", "", str(apn_str))
129
         if len(digits) == 9 and digits[-3] == '0':
130
             digits = digits[:-3] + digits[-2:]
131
132
         return digits.zfill(8)
```

```
133
134
    # Generate APN signature for matching by keeping non-zero digits
135
     def get_apn_signature(apn_str):
         return "".join(d for d in str(apn_str) if d.isdigit() and d != "0")
136
137
138
    # Extract APN from location text using regex
     def extract apn from location(location str):
139
         match = re.search(r'\bAPN\s^*(\d{2,3}[-]?\d{2,3})\b', str(location\_str),
140
     re.IGNORECASE)
141
         if match:
142
             return normalize apn(match.group(1))
143
         return None
144
     #Normalize year values for comparisons
145
     def normalize year(v):
146
147
         if pd.isna(v) or not str(v).strip():
148
             return None
149
         s = str(v).strip()
         if '/' in s:
150
             parts = s.split('/')
151
             if len(parts) >= 3 and parts[2].isdigit():
152
                 y = int(parts[2])
153
154
                 if len(parts[2]) == 2:
155
                     y += 1900 if y >= 35 else 2000
156
                 return y
         s = re.sub(r'\s', '', s)
157
         match = re.search(r'(\d{2,4}))$', s)
158
         if match:
159
             y = int(match.group(1))
160
161
             if 0 <= y <= 99:
                 y += 1900 if y >= 35 else 2000
162
163
             if 1935 <= y <= 2030:
164
                 return y
         return None
165
166
167
     # Find best matching DWR record based on well ID and field comparisons
     def get_best_match(well_id, records, df1_row=None, fields_to_check=None, field_map=None,
168
     used_indices=None, target_df=None):
         if used indices is None:
169
170
             used indices = set()
171
172
         if not well_id.strip():
173
             return None, None, None, None, O
174
175
         well_id_clean = str(well_id).strip().rstrip('M').replace('.0', '')
         if well id clean.startswith('E'):
176
177
             well id normalized = 'E' + well id clean[1:].lstrip('0')
178
         else:
179
             well id normalized = well id clean.lstrip('0')
180
```

```
181
         exact matches = []
182
         for idx, (target_id, wcr_number, apn, addr, depth, water) in enumerate(records):
183
             if idx in used indices:
184
                 continue
185
             target_clean = str(target_id).strip().rstrip('M').replace('.0', '')
186
             if target clean.startswith('E'):
                 target normalized = 'E' + target clean[1:].lstrip('0')
187
188
             else:
189
                 target normalized = target clean.lstrip('0')
190
191
             if well_id_normalized == target_normalized:
192
                 exact_matches.append((target_id, wcr_number, apn, addr, depth, water, idx))
193
194
         if exact matches:
195
             if len(exact matches) == 1:
                 target id, wcr_number, apn, addr, depth, water, idx = exact_matches[0]
196
                 logging.debug(f"Exact match: well_id_normalized='{well_id_normalized}',
197
     target='{target_id}' (single match)")
198
                 return target_id, 100, apn, addr, idx, 0
199
             else:
                 logging.debug(f"Multiple matches found for
200
     well_id_normalized='{well_id_normalized}': {len(exact_matches)} candidates")
201
                 best_match = None
202
                 best match score = -1
203
                 best match idx = None
                 best_matched_fields = []
204
205
206
                 for match in exact_matches:
207
                     target_id, wcr_number, apn, addr, depth, water, idx = match
                     df2 row = df2.iloc[idx] if target df is None else target df.iloc[idx]
208
209
                     match_score = 0
210
                     matched_fields = []
211
                     for df1_field in ["date", "depth_well_cleaned"] + [f for f in fields_to_check
212
     if f not in ["date", "depth_well_cleaned"]]:
                         df2 field = None
213
                         for key, (df1_col, _) in field_map.items():
214
215
                             if df1 col == df1 field:
216
                                 df2_field = key
217
                                 break
218
                         if not df2_field:
219
                             continue
220
221
                         df1_value = df1_row.get(df1_field) if df1_row is not None else np.nan
222
                         df2_value = df2_row.get(df2_field)
223
224
                         if isinstance(df1_value, str) and df1_value.strip() == '':
225
                              df1 value = np.nan
226
                         if isinstance(df2_value, str) and df2_value.strip() == '':
227
                              df2 value = np.nan
228
```

```
229
                          if df1 field == "date":
230
                              y1 = normalize_year(df1_value)
231
                              y2 = normalize year(df2 value)
                              if y1 == y2 and y1 is not None:
232
233
                                  match_score += 2
234
                                  matched fields.append(df1 field)
235
                                  continue
                          elif df1_field == "depth_well_cleaned":
236
                              if not pd.isna(df1 value) and not pd.isna(df2 value):
237
                                  if abs(df1 value - df2 value) <= 5:</pre>
238
239
                                      match_score += 2
240
                                      matched fields.append(df1 field)
241
                                  continue
242
                          elif df1_field in ["water_static_cleaned", "total_depth_cleaned",
     "yield cleaned"]:
243
                              if not pd.isna(df1_value) and not pd.isna(df2_value):
244
                                  if abs(df1 value - df2 value) <= 5:</pre>
245
                                      match_score += 1
246
                                      matched fields.append(df1 field)
247
                                  continue
                          elif df1 field == "apn cleaned":
248
                              v1 = normalize_apn(df1_value) if df1_value else ''
249
                              v2 = normalize apn(df2 value) if df2 value else ''
250
251
                              if v1 == v2 and v1:
252
                                  match score += 1
253
                                  matched_fields.append(df1_field)
254
                                  continue
255
                          if pd.isna(df1_value) and pd.isna(df2_value):
256
257
                              continue
                          elif isinstance(df1 value, str) and isinstance(df2 value, str):
258
259
                              if df1_value.strip().upper() == df2_value.strip().upper():
260
                                  match score += 1
                                  matched fields.append(df1 field)
261
                         elif df1_value == df2_value:
262
263
                              match score += 1
                              matched_fields.append(df1_field)
264
265
266
                     if match score > best match score:
267
                          best_match = match
268
                          best match score = match score
269
                          best match idx = idx
270
                         best_matched_fields = matched_fields
271
272
                 if best_match:
273
                     target_id, wcr_number, apn, addr, depth, water, idx = best_match
274
                     logging.debug(f"Selected match for well id normalized='{well id normalized}'
     based on field matching (score={best_match_score}, matched_fields={best_matched_fields})")
275
                     return target_id, 100, apn, addr, idx, best_match_score
276
```

```
logging.debug(f"no match from field scoring for
277
     well_id_normalized='{well_id_normalized}' - falling back to depth/water")
278
                 best match = exact matches[0]
279
                 best_depth_match = False
280
                 df1 depth = df1 row.get("depth well cleaned", np.nan) if df1 row is not None else
     np.nan
281
                 df1_water = df1_row.get("water_static_cleaned", np.nan) if df1_row is not None
     else np.nan
282
                 for match in exact matches:
                     target_id, wcr_number, apn, addr, depth, water, idx = match
283
284
                     depth_match = (not pd.isna(df1_depth) and not pd.isna(depth) and
     abs(df1 depth - depth) <= 5)
                     water_match = (not pd.isna(df1_water) and not pd.isna(water) and
285
     abs(df1_water - water) <= 5)</pre>
                     if depth_match:
286
                         logging.debug(f"Selected match for
287
     well_id_normalized='{well_id_normalized}' due to depth match (df1_depth={df1_depth},
     candidate_depth={depth})")
288
                         return target_id, 100, apn, addr, idx, 0
                     elif water match and not best depth match:
289
290
                         best match = match
291
                         logging.debug(f"Selected match for
     well_id_normalized='{well_id_normalized}' due to water match (df1_water={df1_water},
     candidate_water={water})")
292
                         best depth match = False
                 target_id, wcr_number, apn, addr, depth, water, idx = best_match
293
                 logging.debug(f"Fallback match: well id normalized='{well id normalized}',
294
     target='{target_id}' (index={idx})")
295
                 return target_id, 100, apn, addr, idx, 0
296
297
         df1_depth = df1_row.get("depth_well_cleaned", np.nan) if df1_row is not None else np.nan
         df1_water = df1_row.get("water_static_cleaned", np.nan) if df1_row is not None else
298
     np.nan
299
         for idx, (target_id, wcr_number, apn, addr, depth, water) in enumerate(records):
             if idx in used indices:
300
301
                 continue
302
             target_clean = str(target_id).strip().rstrip('M').replace('.0', '')
303
             if target_clean.startswith('E'):
                 target_normalized = 'E' + target_clean[1:].lstrip('0')
304
305
             else:
306
                 target_normalized = target_clean.lstrip('0')
307
308
             is substring match = False
309
             if well_id_normalized in target_normalized and len(target_normalized) >
     len(well_id_normalized):
                 is substring match = True
310
                 match type = f"Substring match (well id in target):
311
     well_id_normalized='{well_id_normalized}', target='{target_clean}'"
             elif target normalized in well id normalized and len(well id normalized) >
312
     len(target_normalized):
313
                 is substring match = True
```

```
match type = f"Substring match (target in well id):
314
    well_id_normalized='{well_id_normalized}', target='{target_clean}'"
315
316
             if is_substring_match:
317
                 depth match = (not pd.isna(df1 depth) and not pd.isna(depth) and abs(df1 depth -
     depth) <= 5)
318
                 water_match = (not pd.isna(df1_water) and not pd.isna(water) and abs(df1_water -
     water) <= 5)
                 if not (depth match or water match):
319
                     logging.debug(f"Skipping substring match for
320
     well_id_normalized='{well_id_normalized}', target='{target_clean}' due to no depth/water
     match")
321
                     continue
322
323
                 logging.debug(match_type)
                 return target_id, 80, apn, addr, idx, 0
324
325
         logging.debug(f"No match found for well_id_normalized='{well_id_normalized}'")
326
327
         return None, None, None, None, O
328
329
     # Perform fuzzy matching on addresses against parcel data
330
     def fuzzy address lookup(addr):
         cleaned_input = clean_for_matching(addr)
331
         if not cleaned input:
332
333
             return None, None, 0
334
335
         matches = process.extract(
336
             cleaned input,
337
             parcels_df["parcel_address"].tolist(),
338
             scorer=fuzz.token sort ratio,
             limit=10
339
340
         )
341
342
         for match_text, score, idx in matches:
343
             if score >= 85:
344
                 best row = parcels df.iloc[idx]
345
                 return best_row["parcel_apn"], best_row["parcel_address"], score
346
347
         return None, None, 0
348
349
     # Prepare DWR dataset (df2) for matching by cleaning IDs, APNs, and addresses
     df2["clean_apn"] = df2.iloc[:, 27].apply(normalize_apn)
350
351
     df2["clean_address"] = df2.iloc[:, 3].apply(clean_for_matching)
352
     df2 depth = df2["Total Completed Depth"].astype(float).fillna(np.nan)
     df2_water = df2["Static Water Level"].astype(float).fillna(np.nan)
353
354
355 | df2_ids = []
356 for i in range(len(df2)):
357
         id1_raw = df2.iloc[i, 1] # Legacy Log Number
358
         id0 raw = df2.iloc[i, 0] # WCR Number
         id1 = clean_id(id1_raw)
359
```

```
id0 = clean id(id0 raw)
360
361
         if id1 and re.match(r"^(WCR\d{4}-\d{6})\d{3,8}\E\d{+})", id1):
362
             df2 ids.append(id1)
363
         else:
364
             df2_ids.append(id0)
365
     df2 ids = pd.Series(df2 ids, index=df2.index)
366
    df2 apn = df2.iloc[:, 27].astype(str).fillna('')
367
    df2 addr = df2.iloc[:, 3].astype(str).fillna('')
368
     df2 wcr = df2.iloc[:, 0].astype(str).fillna('')
369
370
    df2_records = list(zip(df2_ids, df2_wcr, df2_apn, df2_addr, df2_depth, df2_water))
371
372 # Prepare Monterey dataset (df3) for secondary matching
    df3.columns = df3.columns.str.strip()
373
374
    df3 ids = []
    for i in range(len(df3)):
375
376
         id1_raw = df3.iloc[i, 1] # Legacy Log Number
377
         id0 raw = df3.iloc[i, 0] # WCR Number
378
         id1 = clean_id(id1_raw)
379
         id0 = clean id(id0 raw)
380
         if id1 and re.match(r"^(WCR\d{4}-\d{6})\d{3,8}\E\d+), id1):
381
             df3 ids.append(id1)
382
         else:
383
             df3 ids.append(id0)
384
    df3_ids = pd.Series(df3_ids, index=df3.index)
     df3 wcr = df3.iloc[:, 0].astype(str).fillna('')
385
    df3_apn = df3.iloc[:, 27].astype(str).fillna('')
386
     df3 addr = df3.iloc[:, 3].astype(str).fillna('')
387
    df3_depth = df3["Total Completed Depth"].astype(float).fillna(np.nan)
388
     df3 water = df3["Static Water Level"].astype(float).fillna(np.nan)
389
    df3_records = list(zip(df3_ids, df3_wcr, df3_apn, df3_addr, df3_depth, df3_water))
390
391
392
    # Prepare parcel data for APN and address lookups
    parcels df["parcel address"] = parcels df.iloc[:, 13].astype(str).apply(clean for matching)
393
394
    parcels_df["parcel_apn"] = parcels_df.iloc[:, 1].apply(normalize_parcel_apn)
     parcel_apn_to_address = dict(zip(parcels_df["parcel_apn"], parcels_df["parcel_address"]))
395
    signature to apns = defaultdict(list)
396
397
    for apn in parcels_df["parcel_apn"]:
398
         sig = get_apn_signature(apn)
399
         signature to apns[sig].append(apn)
400
     apn_lookup = parcels_df.set_index("parcel_apn")["parcel_address"].to_dict()
401
402
    # Set up logging for debugging and tracking matches
403
     logging.basicConfig(
         filename=r"C:\Well Layer Update\Python\Azure\Results\wc11\excel 3\fuzzy_match_debug.log",
404
         filemode="a",
405
406
         format="%(asctime)s [%(levelname)s] %(message)s",
         level=logging.DEBUG
407
408
    )
409
```

```
# Log sample data for debugging
410
    logging.debug(f"df1 well_id_cleaned sample: {df1['well_id_cleaned'].head(10).tolist()}")
412
    logging.debug(f"df2_ids sample: {df2_ids.head(10).tolist()}")
413
414
415
    # Define fields for validating duplicate matches
416
    fields to check = [
         "total_depth_cleaned",
417
         "depth well cleaned",
418
419
         "water static cleaned",
420
         "yield_cleaned",
421
         "permit date",
422
         "permit_no",
423
         "date",
         "apn cleaned"
424
425
    ]
426
427
    #Define mapping of DWR fields to OCR fields and their source columns
428
    field_map = {
         "Owner Assigned Well Number": ("owner_well_id", "owner_assigned_source"),
429
430
         "Date Work Ended": ("date", "date_source"),
431
         "Permit Number": ("permit no", "permit number source"),
         "Driller Name": ("contractor", "driller_name_source"),
432
         "Total Drill Depth": ("total depth cleaned", "total drill depth source"),
433
         "Total Completed Depth": ("depth_well_cleaned", "total_completed_depth_source"),
434
         "Static Water Level": ("water static cleaned", "static water level source"),
435
436
         "Well Yield": ("yield_cleaned", "well_yield_source"),
437
         "B118WellUse": ("planned use former use", "b118welluse source"),
         "Record Type": ("Type of Work", "record_type_source"),
438
         "Permit Date": ("permit_date", "permit_date_source"),
439
         "Driller License Number": ("contractor_license", "driller_license_number_source"),
440
         "Drilling Method": ("drilling method", "drilling method source"),
441
         "Fluid": ("fluid", "fluid_source"),
442
         "Total Draw Down": ("total drawdown", "total drawdown source"),
443
444
         "Test Type": ("test_type", "test_type_source"),
         "Pump Test Length": ("pump_test_length_cleaned", "pump_test_length_source"),
445
         "Other Observations": ("other_observations", "other_observations_source"),
446
         "City": ("city", "city_source"),
447
         "Ground Surface Elevation": ("surface_elevation", "surface_elevation_source"),
448
         "Elevation Determination Method": ("elevation_method", "elevation_method_source"),
449
450
         "Top Of Perforated Interval": ("top_perforations", "top_perforations_source"),
451
         "Bottom of Perforated Interval": ("bottom_perforations", "bottom_perforations_source"),
452
         "Decimal Latitude": ("lat_cleaned", "latitude_source"),
453
         "Decimal Longitude": ("long_cleaned", "longitude_source"),
454
         "APN": ("apn_cleaned", "apn_source")
455
456
457
    #Define additional OCR fields to carry over to supplemented output
458
     additional fields = {
459
         "seal_cleaned": ("seal_cleaned", "seal_cleaned_source"),
```

```
"first_water_cleaned": ("first_water_cleaned", "first_water_cleaned_source"),
460
         "template_id": ("template_id", "template_id_source"),
461
         "OCR match_source": ("ocr_original_match_source", "OCR_match_source_source")
462
463
     }
464
465
     #Initialize set to track used DWR indices for matching
     used dwr indices = set()
466
467
     # Match OCR records to DWR records and update APN/address
468
469
     def match apn and address(row):
470
         well_id = clean_id(row["well_id_cleaned"]).strip()
471
         if not well id:
472
             return row["final_address"], str(row["final_apn"]).zfill(7), "No match", "No valid
     well ID", 0
473
         well_id = str(well_id).strip().lstrip('0').replace('.0', '')
474
475
         logging.debug(f"Processing well id: {well id}")
476
477
         match id, score, apn dwr, addr dwr, dwr idx, match score = get best match(
             well id, df2 records, df1 row=row, fields to check=fields to check,
478
     field_map=field_map, used_indices=used_dwr_indices, target_df=df2
479
         if match_id and dwr_idx is not None:
480
481
             dwr row = df2.iloc[dwr idx]
             wcr number = dwr row["WCR Number"]
482
483
             dwr_apn = dwr_row["clean_apn"]
             dwr_address = dwr_row["clean_address"]
484
             logging.debug(f"Match found for well_id='{well_id}' to df2_id='{match_id}' (score=
485
     {score}, duplicate_match_score={match_score})")
             if not dwr apn or dwr apn == '00000000':
486
                 potential_apn = extract_apn_from_location(dwr_row["Well Location"])
487
488
                 if potential apn:
489
                     dwr_apn = potential_apn
490
                     logging.debug(f"Extracted APN '{dwr_apn}' from Well Location")
491
492
             if dwr_apn in parcel_apn_to_address:
                 return parcel_apn_to_address[dwr_apn], dwr_apn, f"ID match (score {score}) → APN
493
     match", f"OCR ID '{well_id}' → DWR ID '{match_id}' | WCR Number: {wcr_number}", match_score
494
495
             matched apn, matched address, addr score = fuzzy address lookup(dwr address)
             if matched apn and matched address:
496
497
                 return (
498
                     matched_address,
499
                     matched_apn,
500
                     f"ID match (score {score}) → fuzzy address",
501
                     f"OCR ID '{well_id}' → DWR ID '{match_id}' → Address (score: {addr_score}) |
    WCR Number: {wcr_number}",
                     match score
502
503
                 )
504
```

```
logging.debug(f"ID match for '{well id}' to '{match id}' (score: {score}) but no
505
     parcel match")
506
             return row["final_address"], str(row["final_apn"]).zfill(7), f"ID match (score
     {score}) with no parcel match", f"OCR ID '{well_id}' → DWR ID '{match_id}' | WCR Number:
     {wcr_number}", match_score
507
508
         location details raw = row.get("location details", "")
         location_details_clean = clean_for_matching(location_details_raw)
509
510
         if location details clean:
511
512
             dwr_locations_raw = df2["Well Location"].fillna("").astype(str)
513
             dwr_locations_cleaned = dwr_locations_raw.apply(clean_for_matching).tolist()
514
515
             match_result = process.extractOne(location_details_clean, dwr_locations_cleaned,
     scorer=fuzz.token sort ratio)
516
517
             if match result:
518
                 best match text, score, match index = match result
519
                 matched row = df2.iloc[match index]
                 original dwr location = dwr locations raw.iloc[match index]
520
521
522
                 if score >= 80:
523
                     legacy_log = str(matched_row.get("Legacy Log Number", "")).strip().upper()
524
                     if legacy_log != "NN":
525
                         ocr_apn = str(row["final_apn"]).zfill(7)
526
                         ocr match source = str(row.get("match source", ""))
                         if ocr_match_source == "No match" or ocr_apn not in parcel_apn_to_addres-
527
     s:
528
                             ocr apn = "0000000"
529
                         return row["final_address"], ocr_apn, "Fallback to OCR values", "Fuzzy
     match blocked: Legacy Log Number not 'NN'", 0
530
531
                     dwr apn = matched row["clean apn"]
532
                     dwr_address = matched_row["clean_address"]
533
                     if not dwr_apn or dwr_apn == '000000000':
534
535
                         potential apn = extract apn from location(matched row["Well Location"])
536
                         if potential apn:
537
                             dwr_apn = potential_apn
538
539
                     if dwr apn in parcel apn to address:
540
                         wcr_number = matched_row["WCR Number"]
                         return parcel apn to address[dwr apn], dwr apn, "Fuzzy location → APN
541
     match", f"Location '{location_details_raw}' → '{original_dwr_location}' | WCR Number:
     {wcr number}", 0
542
                     matched_apn, matched_address, addr_score = fuzzy_address_lookup(dwr_address)
543
544
                     if matched_apn and matched_address:
545
                         wcr_number = matched_row["WCR Number"]
546
                         return (
547
                             matched_address,
```

```
548
                             matched apn,
549
                             "Fuzzy location → fuzzy address",
550
                             f"Location '{location_details_raw}' → '{original_dwr_location}' →
     Address: {dwr_address} (score: {score}) → Parcel (score: {addr_score}) | WCR Number:
     {wcr_number}",
551
552
                         )
553
554
                     wcr_number = matched_row["WCR Number"]
                     return row["final_address"], str(row["final_apn"]).zfill(7), "Fuzzy location
555
     match with no parcel match", f"Location '{location_details_raw}' → '{original_dwr_location}'
     (score: {score}) | WCR Number: {wcr number}", 0
556
557
         ocr_apn = str(row["final_apn"]).zfill(7)
         ocr_match_source = str(row.get("match_source", ""))
558
559
         if ocr_match_source == "No match":
560
             ocr apn = "0000000"
561
         return row["final address"], ocr apn, "Fallback to OCR values", "No match found", 0
562
    # Apply matching logic to update APN and address fields in OCR dataset
563
     df1 ids = df1["well id cleaned"].apply(clean id)
564
565
     df1_apn = df1["final_apn"].astype(str).fillna('')
     df1 addr = df1["final_address"].astype(str).fillna('')
566
567
568
     df1[["final_address", "final_apn", "match_source", "match_log", "duplicate_match_score"]] =
     df1.apply(
569
         lambda row: pd.Series(match_apn_and_address(row)),
570
         axis=1
571
     )
572
    # Process matched and unmatched records, including Monterey dataset checks
573
     matched records = []
574
     matched dwr ids = set()
575
     unmatched_ocr_records = []
576
577
578
    for i in range(len(df1)):
579
         source_id = df1_ids.iloc[i]
         match source = df1.at[i, "match source"]
580
581
582
         if match source == "Fallback to OCR values":
583
             matched in monterey = "No"
             match_id_mon, score_mon, apn_mon, addr_mon, mon_idx, _ = get_best_match(source_id,
584
     df3 records, df1 row=df1.iloc[i], fields to check=fields to check, field map=field map,
     target_df=df3)
585
             print(f"NO MATCH: df1_id raw='{df1.at[i, 'well_id']}', cleaned='{source_id}'")
586
             if match id mon:
587
                 matched in monterey = "Yes"
             unmatched_record = df1.iloc[i].copy()
588
589
             unmatched_record["Matched_in_Monterey"] = matched_in_monterey
590
             unmatched_ocr_records.append(unmatched_record)
591
```

```
592
         else:
593
             df1_depth = df1.at[i, "depth_well_cleaned"] if "depth_well_cleaned" in df1.columns
     else np.nan
594
             df1_water = df1.at[i, "water_static_cleaned"] if "water_static_cleaned" in
     df1.columns else np.nan
595
             match id, score, apn dwr, addr dwr, dwr index, match score =
     get best match(source id, df2 records, df1 row=df1.iloc[i], fields to check=fields to check,
     field_map=field_map, used_indices=used_dwr_indices, target_df=df2)
596
             if match_id and dwr_index is not None and dwr_index not in used_dwr_indices:
                 logging.debug(f"[Row {i}] Match found for df1_id='{source_id}' to
597
     df2_id='{match_id}' (score={score}, duplicate_match_score={match_score})")
598
                 record = df2.iloc[dwr_index].copy()
599
                 record["final_address"] = df1.at[i, "final_address"]
                 record["final_apn"] = df1.at[i, "final_apn"]
600
                 record["match_source"] = match_source if match_source else f"ID match (score
601
     {score})"
602
                 record["matched_df2_well_id"] = match_id
603
                 record["matched df1 well id"] = source id
                 record["duplicate_match_score"] = match_score
604
605
                 record["df1_row_index"] = i
                 matched records.append(record)
606
607
                 matched dwr ids.add(match id)
                 used dwr indices.add(dwr index)
608
             else:
609
610
                 logging.debug(f"[Row {i}] No df2 match for df1_id='{source_id}' or df2 index
     {dwr index} already used")
611
                 unmatched record = df1.iloc[i].copy()
612
                 unmatched record["Matched in Monterey"] = "No"
613
                 unmatched ocr records.append(unmatched record)
614
615
         if match_source in [
616
             "Fuzzy location → APN match",
             "Fuzzy location → fuzzy address",
617
             "Fuzzy location match with no parcel match"
618
         1:
619
620
             location_raw = df1.at[i, "location_details"]
621
             location clean = clean for matching(location raw)
622
             dwr_locations_raw = df2["Well Location"].fillna("").astype(str)
623
             dwr locations clean = dwr locations raw.apply(clean for matching).tolist()
624
625
             match_result = process.extractOne(
                 location_clean,
626
                 dwr locations clean,
627
628
                 scorer=fuzz.token_sort_ratio
629
             )
630
631
             if match result:
632
                 match_value, score, match_index = match_result
633
                 if match index not in used dwr indices:
634
                     logging.debug(f"[Row {i}] Best fuzzy match='{match_value}' with score=
     {score}")
```

```
matched row = df2.iloc[match index].copy()
635
                     matched_row["final_address"] = df1.at[i, "final_address"]
636
637
                     matched row["final apn"] = df1.at[i, "final apn"]
                     matched_row["match_source"] = match_source
638
639
                     matched_row["matched_df2_well_id"] = df2_ids.iloc[match_index]
640
                     matched row["matched df1 well id"] = source id
                     matched row["duplicate match score"] = 0
641
                     matched_row["df1_row_index"] = i
642
                     matched records.append(matched row)
643
                     matched dwr ids.add(df2 ids.iloc[match index])
644
645
                     used_dwr_indices.add(match_index)
646
                 else:
647
                     logging.debug(f"[Row {i}] Fuzzy match index {match_index} already used")
648
                     unmatched_record = df1.iloc[i].copy()
                     unmatched record["Matched in Monterey"] = "No"
649
                     unmatched_ocr_records.append(unmatched_record)
650
651
             else:
652
                 logging.warning(f"[Row {i}] Fuzzy match expected but no location match found for
     location='{location_clean}'")
                 unmatched record = df1.iloc[i].copy()
653
                 unmatched record["Matched in Monterey"] = "No"
654
                 unmatched ocr records.append(unmatched record)
655
656
     # Generate unmatched DWR records (those not matched to OCR)
657
     unmatched dwr records = df2[~df2 ids.isin(matched dwr ids)]
658
659
     # Save matched and unmatched records to Excel files
660
661
     if matched records:
         matched_df = pd.DataFrame(matched_records)
662
         matched df["final apn"] = matched df["final apn"].fillna("").astype(str)
663
         mask = (matched df["match source"] == "No match") & (
664
665
             matched_df["final_address"].isna() | (matched_df["final_address"].str.strip() == "")
666
         )
         matched df.loc[mask, "final apn"] = "0000000"
667
668
669
         fallback_lookup = df1.set_index("well_id_cleaned")["match_source"].to_dict()
         matched_df["fallback_match_source"] = ""
670
671
672
         for idx, row in matched df.iterrows():
673
             if row.get("match_source") == "ID match with no parcel match":
                 well id = row.get("matched df1 well id")
674
675
                 if well id in fallback lookup:
                     matched_df.at[idx, "fallback_match_source"] = fallback_lookup[well_id]
676
677
678
         matched_df.to_excel(matched_output, index=False)
679
         print(f"Matched DWR records written to: {matched_output}")
680
681
     if unmatched_ocr_records:
682
         unmatched_ocr_df = pd.DataFrame(unmatched_ocr_records)
         unmatched ocr df.to excel(unmatched ocr output, index=False)
683
```

```
print(f"Unmatched OCR records written to: {unmatched ocr output}")
684
685
686
     if not unmatched dwr records.empty:
687
         unmatched dwr records.to excel(unmatched dwr output, index=False)
688
         print(f"Unmatched DWR records written to: {unmatched_dwr_output}")
689
     # Format APN fields in matched and unmatched OCR datasets
690
     matched df = pd.DataFrame(matched records)
691
     unmatched ocr df = pd.DataFrame(unmatched ocr records)
692
693
694
     if not matched_df.empty:
         matched df["final apn"] = matched df["final apn"].apply(format apn with dashes)
695
696
697
     if not unmatched ocr df.empty:
         unmatched_ocr_df["final_apn"] = unmatched_ocr_df["final_apn"].apply(format_apn_with_dash-
698
     es)
699
700
     # Supplement matched dataset with OCR fields and source tracking
701
     supplemented df = matched df.copy().reset index(drop=True)
702
     supplemented df["duplicate exists"] = ""
703
     for _, source_col in list(field_map.values()) + list(additional_fields.values()):
704
         supplemented df[source col] = ""
705
    for final_col, _ in additional_fields.items():
706
707
         supplemented df[final col] = np.nan
708
    # create column for the OCR depths flag
709
     supplemented df["depths flag"] = ""
710
711
712
    columns_to_supplement = [
         (final col, ocr col, source col)
713
714
         for final_col, (ocr_col, source_col) in field_map.items()
715
    additional columns = [
716
         (final_col, ocr_col, source_col)
717
         for final col, (ocr col, source col) in additional fields.items()
718
719
720
721
     df1["well id cleaned"] = df1["well id cleaned"].apply(lambda x: str(x).strip().rstrip(".0")
     if not pd.isna(x) else "")
722
    for idx, row in supplemented_df.iterrows():
723
724
         df1_idx = row.get("df1_row_index")
725
         if pd.isna(df1 idx):
             continue
726
727
         ocr row = df1.iloc[int(df1 idx)]
         supplemented df.at[idx, "duplicate exists"] = ocr row.get("duplicate exists", "")
728
729
         for match_col, ocr_col, source_col in columns_to_supplement:
             original val = supplemented df.at[idx, match col]
730
             ocr_val = ocr_row.get(ocr_col, np.nan)
731
```

```
732
             if match col == "B118WellUse":
733
                 dwr_val_str = str(original_val).strip().upper() if isinstance(original_val, str)
     else ""
734
                 ocr_val_str = str(ocr_val).strip()
                 if dwr_val_str == "UNKNOWN" and ocr_val_str.upper() not in {"", "NAN"}:
735
736
                     supplemented df.at[idx, match col] = ocr val
                     supplemented_df.at[idx, source_col] = "AI"
737
                     continue
738
             if pd.isna(original val) or (isinstance(original val, str) and original val.strip()
739
740
                 if not pd.isna(ocr val) and str(ocr val).strip() != "":
                     supplemented df.at[idx, match col] = ocr val
741
                     supplemented_df.at[idx, source_col] = "AI"
742
743
                 else:
744
                     supplemented_df.at[idx, source_col] = "DWR"
745
             else:
                 supplemented_df.at[idx, source_col] = "DWR"
746
         for match col, ocr col, source col in additional columns:
747
748
             ocr_val = ocr_row.get(ocr_col, np.nan)
749
             if not pd.isna(ocr_val) and str(ocr_val).strip() != "":
                 supplemented_df.at[idx, match_col] = ocr_val
750
                 supplemented df.at[idx, source col] = "AI"
751
752
             else:
753
                 supplemented df.at[idx, match col] = np.nan
754
                 supplemented df.at[idx, source col] = "AI"
755
756
757
         # Pull the two source columns that belong to the depth fields
758
         completed_src = supplemented_df.at[idx, "total_completed_depth_source"]
                       = supplemented df.at[idx, "total drill depth source"]
759
         drill src
760
         # If either source contains "AI" then copy OCR flag
761
         if (pd.notna(completed_src) and "AI" in str(completed_src).upper()) or \
762
            (pd.notna(drill src)
                                     and "AI" in str(drill_src).upper()):
763
             ocr flag = ocr row.get("depths flag", "")
764
765
             supplemented_df.at[idx, "depths_flag"] = ocr_flag
766
         else:
767
             supplemented df.at[idx, "depths flag"] = "" # blank when both are DWR (or empty)
768
    # Flag record type mismatches between DWR and OCR datasets
769
    for idx, row in supplemented df.iterrows():
770
771
         df1_idx = row.get("df1_row_index")
         if pd.isna(df1 idx):
772
773
             continue
774
         ocr_row = df1.iloc[int(df1_idx)]
775
         dwr_record_type = str(row.get("Record Type", "")).strip().upper()
776
         ocr_record_type = str(ocr_row.get("Record Type", "")).strip().upper()
         if ocr_record_type in {"", "UNKNOWN"}:
777
778
             continue
779
         if dwr_record_type != ocr_record_type:
```

```
supplemented_df.at[idx, "Record_Type_Mismatch"] = f"DWR: {dwr_record_type} # OCR:
780
    {ocr_record_type}"
781
    #Add fallback match source for records with no parcel match
782
    supplemented_df["fallback_match_source"] = ""
783
    for idx, row in supplemented df.iterrows():
784
        if row.get("match_source") == "ID match with no parcel match":
785
786
            df1_idx = row.get("df1_row_index")
787
             if not pd.isna(df1 idx):
                 fallback_val = df1.iloc[int(df1_idx)].get("match_source", "")
788
                 supplemented_df.at[idx, "fallback_match_source"] = fallback_val
789
790
791
    # Save supplemented dataset to Excel
792
    supplemented_df.to_excel(supplemented_output_path, index=False)
    print("supplemented file written to:", supplemented output path)
793
```

C:\Well Layer Update\Python\Azure\County Database Matching Script.py

```
import pandas as pd
2
    import re
    import logging
4
5
6
7
8
   # df4_path = r"S:\Water Resources\1_Water Resources Program\GIS\Well Layer
    Update\Python\Outputs\ocr11\master files 2\C1.xlsx"
    # df5 path = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
9
   Update\Python\Outputs\ocr11\excel 3\OCR(SCC1) OCR(DWR1)2.xlsx"
    # matched output = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
10
    Update\Python\Outputs\ocr11\master files 2\SCC1_DWR1_C1_2.xlsx"
   # unmatched_county_output = r"S:\Water Resources\1_Water Resources Program\GIS\Well Layer
11
    Update\Python\Outputs\ocr11\master files 2\C2.xlsx"
    # unmatched source output = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
12
   Update\Python\Outputs\ocr11\master files 2\OCR(SCC1) OCR(DWR1) Final.xlsx"
13
14
   #c3 and dwr2
15
    df4 path = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
    Update\Python\Outputs\ocr11\master files 2\OCR2_C2\C3.xlsx"
    df5 path = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
    Update\Python\Outputs\ocr11\master files 2\DWR2.xlsx"
   matched output = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
17
    Update\Python\Outputs\ocr11\master files 2\C3_DWR2\C3_DWR2.xlsx"
    unmatched county output = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
18
    Update\Python\Outputs\ocr11\master files 2\C3 DWR2\C3.xlsx"
    unmatched source output = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
19
    Update\Python\Outputs\ocr11\master files 2\C3_DWR2\DWR3.xlsx"
20
    df4 = pd.read_excel(df4_path)
21
    df5 = pd.read excel(df5 path)
22
23
24
25
   def clean id(raw):
       if pd.isna(raw):
26
            return ""
27
       original = str(raw).strip()
28
29
        # Replace '0' with '0' and 'e' with 'E'
        cleaned = original.replace("0", "0").replace("o", "0").replace("e", "E").upper().strip()
30
31
       if cleaned.lower().startswith('c'):
            cleaned = 'E' + cleaned[1:]
32
33
       if re.match(r"^WCR\d{4}-\d{6}$", cleaned):
34
            return cleaned
       text = original.lower().replace("0", "0").replace("o", "0").replace("e",
35
    "E").replace(",", "").replace("no.", "").replace("/", " ")
       text = re.sub(r"[\s\n]+", " ", text)
36
       match = re.match(r"^(\d{1,2})[\.-](\d{1,2})[\.-](\d{2,4})(\d{3,8})$", text)
37
38
        if match:
```

```
39
            year str = match.group(3)
40
            try:
41
                year = int(year_str)
42
                if year < 100:
43
                    year += 1900 if year >= 35 else 2000
44
                if 1935 <= year <= 2025:
45
                    return match.group(4)
            except ValueError:
46
47
                pass
        prefix_removed = re.sub(r"^d{1,2}[..-]d{1,2}[..-]d{2,4}", "", text).strip()
48
49
        segments = re.split(r"[\s]+", prefix_removed)
        for segment in reversed(segments):
50
51
            segment_digits = re.findall(r"\d{3,8}", segment)
52
            if segment digits:
53
                return segment digits[-1].lstrip('0')
        digits = re.findall(r"\d{3,8}", text)
54
55
        if digits:
            return digits[-1].lstrip('0')
56
57
        if cleaned.startswith('E') and any(c.isdigit() for c in cleaned[1:]):
58
            return cleaned
        return ""
59
60
61
62
    logging.basicConfig(
63
        filename=r"C:\Well Layer Update\GIS\master files\county_match_debug.log",
64
        filemode="a",
        format="%(asctime)s [%(levelname)s] %(message)s",
65
66
        level=logging.DEBUG
67
    )
68
69
    df4 ids = df4["Log Number"].apply(clean id)
70
71
    df5_legacy_ids = df5["Legacy Log Number"].apply(clean_id) # Apply clean_id for consistency
72
    df5 wcr ids = df5["WCR Number"].apply(clean id) if "WCR Number" in df5.columns else
    pd.Series([""] * len(df5))
73
74
75
   matched records = []
76
    unmatched county records = []
77
    unmatched_source_records = []
    used df5 indices = set()
78
79
   for i, county_id in enumerate(df4_ids):
80
81
        if not county_id.strip():
82
            continue # Skip empty Log_Number
83
        county_id_clean = str(county_id).strip().rstrip('M').replace('.0', '')
        county_id_normalized = 'E' + county_id_clean[1:].lstrip('0') if
84
    county_id_clean.startswith('E') else county_id_clean.lstrip('0')
85
86
        # Debug specific case
```

```
if county id clean.lower() == 'e0139534' or county id clean == 'E0139534':
 87
 88
             logging.debug(f"Debugging e0139534: county_id_clean='{county_id_clean}',
     county_id_normalized='{county_id_normalized}'")
 89
 90
         match found = False
         matched field = ""
 91
         df5 row = None
 92
93
         df4_row = df4.iloc[i]
 94
 95
         # try matching with Legacy Log Number
 96
         for j, legacy_id in enumerate(df5_legacy_ids):
             if j in used df5 indices:
97
                 continue
98
             legacy_id_clean = str(legacy_id).strip().rstrip('M').replace('.0', '')
99
             legacy_id_normalized = 'E' + legacy_id_clean[1:].lstrip('0') if
100
     legacy_id_clean.startswith('E') else legacy_id_clean.lstrip('0')
101
102
             if county id normalized == legacy id normalized:
103
104
                 logging.debug(f"Match found: county_id='{county_id}' to
     source_legacy_id='{legacy_id}'")
                 df5_row = df5.iloc[j].copy()
105
                 matched_field = "Legacy Log Number"
106
                 used df5 indices.add(j)
107
                 match found = True
108
109
                 break
110
         #if no match on Legacy Log Number, try WCR Number
111
         if not match found and "WCR Number" in df5.columns:
112
             for j, wcr id in enumerate(df5 wcr ids):
113
                 if j in used df5 indices:
114
                     continue
115
                 wcr_id_clean = str(wcr_id).strip().rstrip('M').replace('.0', '')
116
117
                 wcr id normalized = 'E' + wcr id clean[1:].lstrip('0') if
     wcr_id_clean.startswith('E') else wcr_id_clean.lstrip('0')
118
119
                 if county id normalized == wcr id normalized:
120
                     logging.debug(f"Match found: county_id='{county_id}' to
     source_wcr_id='{wcr_id}'")
                     df5 row = df5.iloc[j].copy()
121
                     matched field = "WCR Number"
122
123
                     used_df5_indices.add(j)
124
                     match found = True
                     break
125
126
127
         if match found:
             # Append all df4 columns with 'county_' prefix
128
             df4_row_prefixed = df4_row.rename(lambda x: f"county_{x}")
129
             # Create record with df5 columns, df4 columns, and match metadata
130
131
             record = pd.concat([df5 row, df4 row prefixed])
             record["matched_field"] = matched_field
132
```

```
record["cleaned county id"] = county id
133
             record["source_id"] = legacy_id if matched_field == "Legacy_Log Number" else wcr_id
134
135
             matched records.append(record)
136
         else:
137
             unmatched_county_records.append(df4_row)
138
139
     for j in range(len(df5)):
140
         if j not in used df5 indices:
141
             df5 row = df5.iloc[j].copy()
142
143
             # Collect only unmatched df5 records
             unmatched source records.append(df5 row)
144
145
             logging.debug(f"Unmatched df5 record added: index={j},
     source_id='{df5_row.get('Legacy Log Number', 'N/A') if df5_row.get('Legacy Log Number') else
     df5_row.get('WCR Number', 'N/A')}'")
146
    # save matched
147
     if matched records:
148
149
         matched df = pd.DataFrame(matched records)
         matched_df.to_excel(matched_output, index=False)
150
         print(f"Matched records written to: {matched output}")
151
     else:
152
         print("No matched records to write to matched output.")
153
154
    # save unmatched
155
     if unmatched_county_records:
156
157
         unmatched_county_df = pd.DataFrame(unmatched_county_records)
158
159
         if 'IFILE' not in unmatched_county_df.columns:
160
             unmatched county df['IFILE'] = pd.NA
         unmatched_county_df.to_excel(unmatched_county_output, index=False)
161
162
         print(f"Unmatched county records written to: {unmatched_county_output}")
163
     else:
164
         print("No unmatched county records with non-empty Log_Number.")
165
166
    # save sources
167
     if unmatched_source_records:
168
         unmatched_source_df = pd.DataFrame(unmatched_source_records)
169
         unmatched_source_df.to_excel(unmatched_source_output, index=False)
         print(f"Unmatched source records written to: {unmatched_source_output}")
170
171
    else:
         print("No unmatched source records.")
172
```

C:\Well Layer Update\Python\Azure\Field Highlighting Script.py

```
from openpyxl import load workbook
 2
   from openpyxl.styles import Font
 3
 4
 5
    supplemented path = r"S:\Water Resources\1 Water Resources Program\GIS\Well Layer
    Update\Python\Outputs\ocr11\master files 2\OCR(SCC1) OCR(DWR1) Final.xlsx"
6
 7
    # Updated field map to include additional fields
8
    field map = {
9
        "Owner Assigned Well Number": "owner assigned source",
        "Permit Number": "permit_number_source",
10
        "Driller Name": "driller name source",
11
        "Total Drill Depth": "total_drill_depth source",
12
        "Total Completed Depth": "total completed depth source",
13
14
        "Static Water Level": "static water level source",
15
        "Well Yield": "well_yield_source",
        "B118WellUse": "b118welluse_source",
16
17
        "Record Type": "record type source",
        "Permit Date": "permit_date_source",
18
        "Driller License Number": "driller license number source",
19
        "Drilling Method": "drilling_method_source",
20
        "Fluid": "fluid source",
21
22
        "Total Draw Down": "total drawdown source",
23
        "Test Type": "test type source",
        "Pump Test Length": "pump_test_length_source",
24
25
        "Other Observations": "other_observations_source",
26
        "City": "city_source",
27
        "Ground Surface Elevation": "surface elevation source",
28
        "Elevation Determination Method": "elevation_method_source",
        "Top Of Perforated Interval": "top perforations source",
29
30
        "Bottom of Perforated Interval": "bottom perforations source",
31
        "Decimal Latitude": "latitude_source",
        "Decimal Longitude": "longitude_source",
32
33
        "APN": "apn source",
34
        "seal_cleaned": "seal_cleaned_source",
        "first_water_cleaned": "first_water_cleaned_source",
35
        "template id": "template id source",
36
37
        "OCR_match_source": "OCR_match_source_source"
38
39
   # Load workbook and sheet
40
   wb = load workbook(supplemented path)
41
   ws = wb.active
42
43
44
45
   headers = {cell.value: idx for idx, cell in enumerate(ws[1], 1)} # 1-based indexing
46
   red_font = Font(color="FF0000")
47
```

```
48
49
   # Get indexes for special fields
50
   final apn idx = headers.get("final apn")
   final address idx = headers.get("final address")
51
52
   match_source_idx = headers.get("match_source")
53
54
    # Loop through rows starting from row 2 (excluding header)
    for row in ws.iter_rows(min_row=2, max_row=ws.max_row):
55
        # Highlight special logic for final apn and final address
56
        match source val = row[match source idx - 1].value if match source idx else None
57
58
        if final_apn_idx:
59
60
            apn cell = row[final apn idx - 1]
            if match source val not in ["DWR APN matched to parcel database", "Fuzzy DWR address
61
    match", "No match"]:
                apn_cell.font = red_font # Mark as red if not in accepted match sources
62
63
64
        if final_address_idx:
65
            addr cell = row[final address idx - 1]
            if match source val not in ["DWR APN matched to parcel database", "Fuzzy DWR address
66
    match"]:
67
                addr cell.font = red font
68
        #Apply red font to "AI"-sourced fields
69
        for field, source col in field map.items():
70
            col_idx = headers.get(field)
71
            source idx = headers.get(source col)
72
73
74
            if not col_idx or not source_idx:
75
                continue
76
            source_val = row[source_idx - 1].value
77
            if source val == "AI":
78
79
                row[col_idx - 1].font = red_font # Highlight the main field in red
80
81
   # Save with highlights
82
   wb.save(supplemented path)
   print("Field highlighting complete.")
83
```

Introduction

Santa Cruz County's water resources serve a critical role in providing municipal, domestic, and agricultural water supply, preserving fragile watersheds, providing resilient habitats, and supporting recreational and commercial activities. Nearly all water supplies are derived from local rainfall and captured through stream diversions and groundwater wells (Figure 1). County staff, local agencies, organizations, and the community continue to collaborate on long-term, adaptive solutions to sustain environmental quality and ensure safe, reliable, and affordable water resources for current and future needs.

Projects and planning efforts undertaken by regional agencies and non-profits are preparing for a future with a greater variability in precipitation and temperature than Santa Cruz experienced when our existing infrastructure was built, as well as a growing population. This report encompasses activities that took place during calendar year 2025 and reflects water use and rainfall from the 2025 water year which began October 1, 2024 and ended September 30, 2025.

Figure 1: Local Water Supply Distribution.

Water Resource Management activities during 2025 were influenced by:

- Changing regulations: Many water systems in the County have been impacted by new water quality regulations that are being rolled out.
 - California has adopted a new Hexavalent Chromium (referred to as Chromium-6, best known from the movie *Erin Brockovich*) limit of 10 parts per billion. This is the lowest limit in the nation and possibly in the world. Mid- and South-Santa Cruz County have naturally occurring Chromium-6 above this new standard, prompting water systems to send notifications to customers and install expensive treatment systems.
 - Water systems are now required to monitor for per- and polyfluoroalkyl substances – known as PFAS. Currently no treatment is required, though notification to customers is required when established limits are exceeded.
 Drinking water limits will be enforced for all systems in 2029. The first treatment

- plant in Santa Cruz County was successfully completed this year at the Buena Vista Migrant Center.
- Low Rainfall: Water year 2025 was average for California as a whole, but dry for Santa Cruz County. Rainfall averages at gauges in Ben Lomond and the City of Santa Cruz were just over 60% of the long-term average, and the lowest they have been since 2021 (Figure 2). Despite this, Loch Lomond, the only surface water reservoir in the County, was full at the end of the rainy season and had only dropped 7% below full at the end of the water year.

Cumulative Precipitation, Santa Cruz, CA Water Year 2025

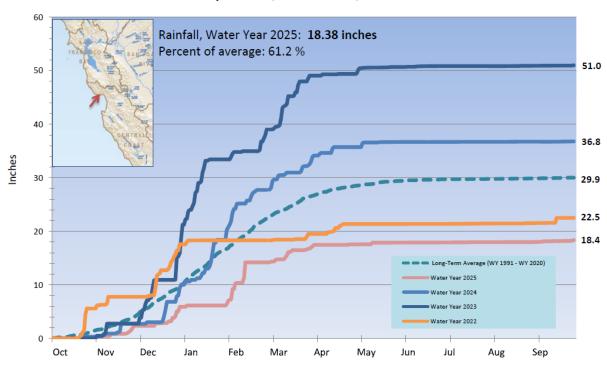


Figure 2: Rainfall in water years 2022-2025 compared to the long-term average, data from CIMIS, credit City of Santa Cruz Water Department.

Low Temperatures: Despite the low rainfall, streamflow in the San Lorenzo River at Big Trees ended the year slightly above the long-term median (Figure 3). How can this be? Firstly, the waterways in the County have benefited from several wet years in a row, which make them more

resilient to a single

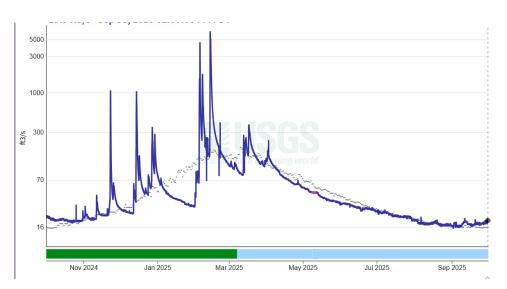


Figure 3: Streamflow in cubic-feet per second at Big Trees on the San Lorenzo River for Water Year 2025, shown in front of the long-term median. Credit USGS.

dry year. But secondly, and likely more important, Santa Cruz experienced a cool Summer.

Year	Maximum Average Temperature (°F) for June	
2025	60.2	
2024	65	
2023	61.04	
2022	71.58	
2021	69.13	
2020	67.21	

June is a good month to review when considering temperature impacts on water supplies. That is because the days in June are so long that high temperatures can have a dramatic impact on water resources through evapotranspiration from vegetation, and increased water demand for irrigation and other efforts to keep cool. Temperature records taken at the Watsonville Airport show that the maximum average temperature for June 2025 was 60.2 Fahrenheit (Table 1).

Table 1: Maximum Average Temperature for June 2025 at the Watsonville Airport, Weather Underground.

Key highlights for the year include:

- Municipal water use remains lower than it was when recent drought restrictions were in place, and is around 23% below the water use levels of the early 1980s.
- The Pajaro Valley Water Management Agency (PV Water) celebrated a ribbon cutting for the College Lake project.
- Implementation of Measure Q kicked off as the County and local partners hit the ground running. The Land Trust of Santa Cruz County was selected to be the land stewardship recipient of funds, the Citizens Oversite Advisory Board (COAB) was selected, and the Vision Plan adopted.
- The County completed the first Multi-Jurisdictional Hazard Mitigation plan.

- Groundwater basins continued to benefit from direct recharge and lower than average groundwater pumping due to ample surface water and cooler temperatures.
- The City of Santa Cruz and Scotts Valley Water District have nearly completed an
 intertie connecting their two water supplies. This intertie was first conceived of over a
 decade ago but the funding was not available until a grant from the State. The intertie
 is a key step for water supply resiliency and groundwater management.

Coordination between water practitioners is critical to regional resilience. This report was written by staff in the Santa Cruz County Water Resources Program in Environmental Health. Updates were provided by four County departments and by partners throughout the county including the San Lorenzo Valley Water District, Scotts Valley Water District, City of Santa Cruz Water Department, Soquel Creek Water District, Central Water District, City of Watsonville, Pajaro Valley Water Management Agency, Regional Water Management Foundation, Pajaro River Flood Management Agency, and the Resource Conservation District of Santa Cruz County.

Table of Contents

Introduction	1
Table of Contents	5
List of Figures	7
Section 1: Regional Water Supply Resilience	9
Areas for Continued Improvement	10
Efficiency in Existing Water Supply – Municipal Suppliers	13
San Lorenzo Valley Water District (SLVWD)	13
Scotts Valley Water District (SVWD)	13
City of Santa Cruz Water Department (SCWD)	14
The Soquel Creek Water District (SqCWD)	14
Central Water District (CWD)	15
The City of Watsonville Public Works (CoW):	16
Regional Project Funding	16
Efficiency in Existing Water Supply – Agriculture	17
Ag Irrigation Efficiency Assistance	17
Managed Aquifer Recharge/ Recharge Net Metering Program	18
Creation of New Water Supplies – Municipal	19
San Lorenzo Valley Water District (SLVWD):	19
Scotts Valley Water District (SVWD):	19
City of Santa Cruz Water Department (SCWD):	19
The Soquel Creek Water District (SqCWD)	20
Groundwater Management	21
Santa Margarita Groundwater Agency	21
Santa Cruz Mid-County Groundwater Agency	22
Pajaro Valley Water Management Agency (PV Water)	23
County's Roles in Groundwater Management	28
Wells GIS Layer Update (Nearing Completion 2025)	28
County of Santa Cruz Well Ordinance Update	28
Small Water Systems and Domestic Wells	29
Services Offered by the County	31
2025 DROP Implementaion Highlights	32
Specific Water System Assistance	32

Section 2: Water Quality of Santa Cruz County	35
Santa Cruz County Water Quality Program and Laboratory	35
Harmful algal blooms	37
Beach Water Quality	41
Local Area Management Program (LAMP) 5-year assessment	44
Battery Fire Response	46
Drinking Water Quality and Supply Protection	47
San Lorenzo Valley Water District (SLVWD)	47
Scotts Valley Water District (SVWD)	48
City of Santa Cruz Water Department (SCWD)	48
Soquel Creek Water District (SqCWD)	48
The City of Watsonville Public Works (CoW):	49
Non-Point Source Water Quality Programs	49
County Regulatory Programs	49
Rural roads and home drainage	50
Agricultural Water Quality	50
Section 3: Natural Resources and Flood Management	52
Fisheries Monitoring and Protection	52
Juvenile Steelhead and Stream Habitat Monitoring:	52
Santa Cruz County Streamwood Program	54
Fish Passage and Habitat Projects	55
Watershed Management Activities	58
Disaster Preparation and Response	62
County Hazard Mitigation and Flood Management Activities	62
Pajaro Regional Flood Management Agency (PRFMA)	63
Forest and Fuels Management for Water Resource Protection and Watershed Health	64
Attachment 1: Water Use in Santa Cruz County, 2025	66
Attachment 2: Common Acronyms	67
Attachment 3: Online Resources	68

List of Figures

Figure 1: Local Water Supply Distribution	1
Figure 2: Rainfall in water years 2022-2025 compared to the long-term average, data from CIMIS, credit City of Santa Cruz Water Department	2
Figure 3: Streamflow in cubic-feet per second at Big Trees on the San Lorenzo River for Water Year 2025, shown in front of the long-term median. Credit USGS	
Figure 4: Water Production and Connections for Large Water Systems (1984-present), with Rainfall Data	10
Figure 5: Small Community Water Systems 2024 Monthly Use, demonstrating an increase during the summer months	11
Figure 6: Per capita daily usage of the customers of the county's five largest water suppliers and compares it with the average for Small Community Water systems	
Figure 7: City of Watsonville educational brochure	16
Figure 8: Pure Water Soquel Treatment Steps including ultra filtration membranes, reverse osmosis, and ultraviolet light	.21
Figure 9: College Lake Weir System installed by the Pajaro Valley Water Management Agency	
Figure 10: Big Basin Water Town Hall panel held in November 20253	33
Figure 11: New intake and tanks for Waterman Gap water system	34
Figure 12: Map of watersheds with impaired water bodies in the County as identified by the Central Coast Regional Water Quality Control Board	35
Figure 13: Cumulative rainfall for water years (starting October 1 and ending September 30) from CIMIS station 104 at De Laveaga3	36
Figure 14: Santa Cruz Water Quality Monitoring Program routine monitoring site locations within respective Santa Cruz County watersheds	37
Figure 15: Cyanobacterial blooms at Pinto Lake (left) and Kelly Lake (right), summer 20253	38
Figure 16: Total Microcystin concentrations (µg/L) at County Sites	39
Figure 17: Photomicrographs close up of microcystin4	40
Figure 18: Photomicrographs close up of Akashiwo sanguinea at Seacliff Beach (O140) upper left; Alexandrium at Rio Del Mar Beach (O110) upper right; and Pseudo nitschia at Seacliff Beach (O140) bottom	
Figure 19: Cumulative daily rainfall for CIMIS station 104 at De Laveaga from October 1, 2024 through September 30, 2025	42
Figure 20: Timeseries of fecal indicator bacteria from (a) Cowell's Beach and (b) Capitola Beach at Soquel Creek during the 24-25 water year	43
Figure 21: Trends in long-term (>28 years) nitrate concentrations during the dry season (June-September)4	45

2025 Water Resources Status Report Page 8 of 68

Figure 22: Boxplots of heavy metal concentrations in soil and surface water samples for control (blue) and sample (red) sites	47
Figure 23: Streamwood Complex at Big Creek in May 2025. These logs were left to provide habitat as they posed no immediate or direct threat	
Figure 24: Hazard Mitigation Plan Cover	

Section 1: Regional Water Supply Resilience

This section focuses on efforts by the County, municipal water providers, Groundwater Sustainability Agencies, and non-profit organizations to shore up existing water supplies and infrastructure, manage existing resources appropriately, and develop new water supplies.

Like much of California, Santa Cruz County is projected to face intensifying weather swings from extreme dry conditions to extreme wet conditions. These weather swings will be experienced as longer, more frequent, and more intense droughts, that are punctuated by more extreme rain events. We have already begun to see this change with the 2022-23 Atmospheric River events, which dropped record amounts of rain on our county, but had been preceded by three years of drought conditions. This change in rainfall patterns is likely to cause increasing stress on local water resources.

To meet this challenge, county residents and agencies have continued their efforts to limit water waste. In particular, the large water suppliers have been tremendously successful in reducing demand for water in the county. These agencies have achieved this through multiple methods, which include;

- 1. Utilizing smart metering, which can notify residents immediately when a leak occurs
- 2. Financially supporting residents to replace water intensive fixtures and irrigation, such as toilet and lawn replacement rebates.
- 3. Education campaigns to educate residents about water conservation, such as through the <u>WaterSavingTips.org</u> website.

The success of these efforts can be seen when comparing the number of water connections in the county to water production. Since 1984, the large water systems have increased the number of connections by approximately 32%, but their annual water production has decreased by 23% (see Figure 4). The decoupling of population growth and water demand began in the late 1990's and reflects higher standards for the water consumption of indoor fixtures and appliances. However, the trend took off after an exceptionally dry 2013 led to State of Emergency declaration. This resulted in many policy changes locally, and encouraged a mentality of water conservation among agencies and residents.

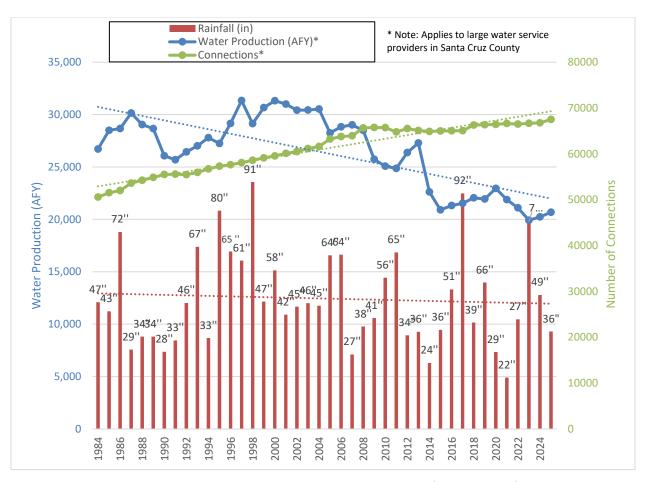


Figure 4: Water Production and Connections for Large Water Systems (1984-present), with Rainfall Data

Areas for Continued Improvement

As indoor fixtures and appliances have become increasingly efficient, outdoor water use continues to be large portion of residential water use. According to the California Department of Water Resources, outdoor water use accounts for roughly half of household usage¹. Outdoor water use is extra challenging to our local water resources because it increases during drier times of the year, when water sources are most stressed. This is illustrated in Figure 5, which shows the 2024 water extraction data of small Community water systems (<200 connections) in Santa Cruz County. The peak water demand in August was double that of April, which can largely be attributed to increased outdoor water use. To reduce stress on local water resources, reducing outdoor water use should be a priority.

¹ <u>Water Use in California's Communities - Public Policy Institute of California</u>

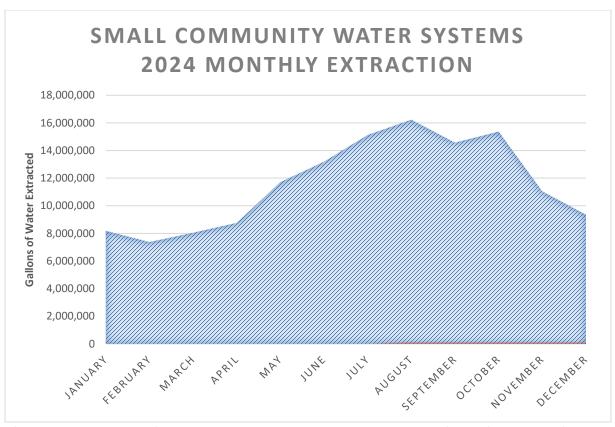


Figure 5: Small Community Water Systems 2024 Monthly Use, demonstrating an increase during the summer months.

It is important to note that these Small Community Water Systems are much more likely to serve larger parcels, with significant outdoor water use. The large water suppliers, which tend to serve more urbanized areas, water usage does not increase as much in the dry season. Figure 6 below shows the per capita daily usage of the customers of the county's five largest water suppliers and compares it with the average for Small Community Water systems. Not only do the large water suppliers have a lower winter baseline, but they also have significantly smaller increases in the summer. There are many factors that can affect per capita water usage², but a major driver is larger parcels with more irrigated space.

² State Water Resources Control Board: <u>Factors that can affect per capita water</u>

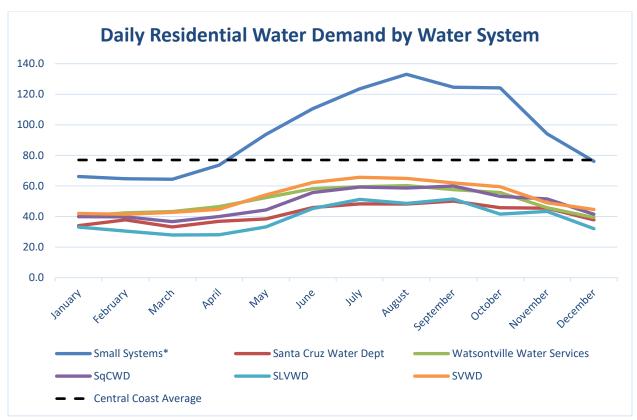


Figure 6: Per capita daily usage of the customers of the county's five largest water suppliers and compares it with the average for Small Community Water systems

The data presented here are averages and all systems will have more and less efficient users; however low-density development has greater potential for high per capita water demand. According to the SPUR report "Water for a Growing Bay Area"³, increasing density can allow for more homes without using more water. The report identifies two reasons for this:

- Infill development often occupies space that was already irrigated. Infill
 development, such as adding an accessory dwelling unit (ADU), converting a singlefamily home to a multiplex, or splitting a single lot into two will not increase the
 possible space irrigated, but can reduce it.
- 2. **New construction tends to be more efficient than older buildings.** New construction needs to comply with current building code standards and efficient landscaping requirements. Older buildings also tend to accumulate plumbing leaks over time.

The County continues to encourage more infill development, such as multi-family housing and ADUs, and through actions like the Housing Element Rezone Program⁴.

For municipal water providers, water supply projects and activities encompass two primary categories. The first is using existing water sources efficiently by incentivizing low water use,

³ Water for a Growing Bay Area | SPUR

⁴ <u>Housing Element Rezone Program</u>

reducing leaks, upgrading infrastructure, and using new tools to reduce irrigation water needs. Santa Cruz County is one of the most efficient counties in the state when it comes to per capita water use, and incentives and messaging by the larger water suppliers continue to encourage efficiency. The second supply category is the creation of "new" water supplies through projects like groundwater recharge and wastewater recycling, as well as optimizing the timing of using existing surface and groundwater resources to increase water in storage.

Efficiency in Existing Water Supply – Municipal Suppliers

Water agencies are undertaking the following activities to improve the efficiency of current water supplies:

San Lorenzo Valley Water District (SLVWD)

- SLVWD adopted its 2025-27 budget and Capital Improvement Program and is working
 on implementing the projects. A number of pipeline and tank upgrades, fire prevention
 projects, and the construction of 3 new water tanks will occur in fiscal year 25/26. All
 project details are available on the SLVWD's website here.
- Construction of improvements necessary for consolidation of Bracken Brae and Forest Springs is ongoing pursuant to grant funding.
- The District maintains a Stage 1 water shortage designation due to unrestored water intakes and pipelines.
- SLVWD actively pursues incidents of water waste by investigating, recommending
 corrective action, and providing follow-up documentation of resolution. As of October
 2023, ~50% of the meters have been upgraded. The new meters, combined with the
 Badger Eye on Water engagement portal, allow the customers to view hourly usage
 history, and set up leak detection alerts and high bill notifications.
- In Fiscal Year 2025/2026 SLVWD issued 32 rebates for Energy Star rated washing machines, low-flow toilets, and weather-based irrigation controller installations.
 SLVWD conducts a variety of public education activities such as a dedicated Water Use Efficiency Page on its website, e-Newsletters, billing inserts, Instagram and Facebook postings.
- SLVWD hired new General Manager Jason Lillion in July 2025.

Scotts Valley Water District (SVWD)

- SVWD continued assisting City of Scotts Valley in assessing the condition of the Scotts
 Valley Tertiary Treatment Plant and finding a mutually advantageous solution for
 wastewater operations, which provides the source of recycled water used throughout
 the City.
- SVWD utilized WaterSmart customer engagement portal for leak notification procedures and achieving continued reduction in the volume of water lost through leaks. Achieved 68% registration rate at WaterSmart in 2025.
- SVWD continued Think Twice Water Use Efficiency Program in response to the Stage 1
 Water Condition. Program activities included 2x Turf Rebate, and Pool Cover Rebate.

- The SVWD is also working on rehabilitation of Bethany tank site, and completed design
 of structural modifications at Glenwood tank to prevent undermining of the tank
 foundation in reaction to a landslide that occurred below tank site during the winter
 storms of 2023.
- Completed construction of 1,450 LF 8" main on La Cuesta Dr. This main connected a new critical loop in SVWD's distribution system.

City of Santa Cruz Water Department (SCWD)

- In June 2025, the City received an order from the California State Water Resources Control Board approving its petitions for water rights changes and issuance of amended licenses and permits. The amended water rights add flexibility to the location of water diversions and broaden the places of use of the water. They also incorporate changes to instream flow requirements that are essential for the survival of coho salmon and steelhead trout, while also providing the operational flexibility needed to implement the City's Anadromous Salmonid Habitat Conservation Plan while maintaining long-term water supply reliability and supporting sustainable regional water resource management.
- Continuing planning for major infrastructure improvements at the Graham Hill Water Treatment Plant (GHWTP) under an innovative design-build framework. The GHWTP Facility Improvements Project is expected to begin construction in 2027. Ongoing construction of the Concrete Tanks Replacement Project as a predecessor project to the larger infrastructure improvements at the GHWTP, project is wrapping up, with construction expected to be completed in early 2026.
- Began construction of the Newell Creek Pipeline: Felton to Graham Hill Segment. The Newell Creek Pipeline provides the critical pipeline connection between Loch Lomond Reservoir and the Graham Hill Water Treatment Plant. The projects is anticipated to to have construction completed in the spring of 2027.
- Replacement of the City's University 4 Tank was initiated in 2025. Construction, which
 includes replacement of the existing 400,000 gallon tank, installation of a new
 maintenance tank, and other facility improvements, is expected to be completed in
 later 2026.
- Improvements at the City's Beltz 12 well facility to address water quality issues with
 native groundwater are also underway. The treatment system upgrades will allow for
 on-site treatment of ammonia by increasing chlorine contact time in a new pressure
 vessel. Construction is expected to be completed in 2026.

The Soquel Creek Water District (SqCWD)

SqCWD continues a robust conservation program including: a large variety of indoor
and outdoor rebates, a landscape budget tool for commercial landscapes, high water
use diagnostics via phone, and free water saving devices like hose nozzles, faucet
aerators, and low flow showerheads. The WaterSmart Customer Portal provides
customers with their digital meter's daily and hourly water use, notifies them of

potential leaks, and helps them diagnose the potential cause of high use. In addition to the WaterSmart Portal, staff assist customers by providing various tools (e.g., the Leak Guide, phone diagnostics, technician visits, etc.) to help them locate and resolve leaks. In 2025, average residential consumption was approximately 48 gallons per person per day.

- Work continued on several components of the \$7.6 million Sustainable Groundwater Management Act Implementation Grant awarded to the Santa Cruz Mid-County Groundwater Agency that focus on SqCWD infrastructure and/or collaboration, including the:
 - Design and construction of a groundwater extraction well on Cunnison Lane in Soquel. The new well will improve redundancy and flexibility and help redistribute groundwater pumping further inland.
 - Completion of the Park Avenue transmission main/bottleneck improvements to increase system reliability and allow more flexibility to redistribute pumping inland away from coastal wells. - Completed at the end of 2024.
 - Regional Water Resources Optimization Study. In collaboration with the City of Santa Cruz, this project modeled and analyzed various implementations of select programs and management actions as identified in the Basin's Groundwater Sustainability Plan. - Completed in 2025.

Central Water District (CWD)

- The Central Water District is continuing its efforts to install a new well that will ensure water resilience for current and future needs.
- CWD is continuing to replace or update its water storage tanks located throughout the water district's boundaries.
- The District has actively been clearing plant overgrowth and debris for the purpose of reducing fire fuel loads at the District Office and at pertinent tank sites. The District has been working closely with the California Conservation Corp to complete these important projects.
- Central Water District customers continue to demonstrate commitment to ongoing conservation efforts by maintaining over 40% reduction in water consumption compared to the District's highest historical water usage.
- The District continues efforts to replace aging meters with new technology meters to allow customers more control over their water consumption. To date, over a quarter of the District's meters have been replaced, with plans to complete the remaining replacements within the next five years.

The City of Watsonville Public Works (CoW):

- The City of Watsonville Water Division anticipates completion of a new 2.4MG water storage tank in December 2025. This tank will help the City maintain and continue to provide its customers with safe and reliable potable water. It will also provide emergency storage in the event of a catastrophic event such as an earthquake, drought, or in case of failure of the neighboring existing tank. The RWMF, in collaboration with, was awarded \$5 million from California's Urban and Multibenefit Drought Relief Grant Program to fund the tank construction.
- CoW continues with construction of the pump station for its recently drilled well. This new well and pump station will supplement existing sources and maintain the water system's high level of reliability. This project is expected to be completed in Fall 2026.
- CoW continues to invest in its water main replacement program, achieving more than 2 miles of upgrades in 2024-25.
- CoW completed a rehabilitation of one of its existing welded steel water storage tanks. This included recoating the tank interior along with construction modifications and seismic retrofits to the supply piping, discharge piping, and overflow piping.
- City of Watsonville residents and businesses continue to receive water conservation
 education and outreach provided by the City's Outreach Team via the CoW's website,
 social media, newsletter, events, workshops and in-person presentations. CoW also
 continues to offer conservation devices and financial incentives to encourage
 conservation. See Figure 7.

Regional Project Funding

- The Regional Water Management Foundation (RWMF) is providing grant administration and acting as coordinator on two IRWM implementation grants awarded to the RWMF on behalf of the Santa Cruz Region.
- Proposition 1 IRWM Implementation Grant Program Round 1 award is funding three
 projects that collectively benefit water supply, water quality, watershed stewardship,
 stormwater and flood management and habitat restoration. All three projects were
 successfully completed in 2025.

Project Title	Lead Agency	Grant Award	Schedule
Countywide Sediment Reduction from Developed Parcels & Rural Roads	Resource Conservation District Santa Cruz County	\$785,657	2020 – 2025
Davenport Water Supply Tank	County of Santa Cruz, Davenport County Sanitation District	\$556,254	2020 - 2025

Figure 7: City of Watsonville educational brochure

Watsonville Slough Farms Wetland Restoration	Resource Conservation District Santa Cruz County	\$333,144	2021 – 2025
	,		

 Work on the Proposition 1 IRWM Implementation Grant Program Round 2 grant award began in Fall 2023. The projects provide benefits to water supply, water quality, watershed stewardship, stormwater and flood management, habitat restoration, and climate change response.

Project Title	Lead Agency	Grant Award	Schedule
Fire Hardening of Critical Water Supply Infrastructure	San Lorenzo Valley Water District	\$305,000	2023 – 2027
Equalization Tank Replacement	County of Santa Cruz, Boulder Creek County Sanitation District	\$405,312	2023 – 2026
Decision-Support Tool - Understanding Climate Influenced River Flooding	City of Santa Cruz, Department of Public Works	\$179,375	2023 – 2025
Recreational Vehicle Sewage Disposal Station	City of Santa Cruz, Department of Public Works	\$85,000	2023 – 2026
Atkinson Lane Integrated Flood Management and Watershed Restoration	City of Watsonville	\$545,000	2023 – 2027
Drinking Water Treatment System & Secondary Water Source Rountree Facility	County of Santa Cruz, General Services	\$800,000	2023 – 2026

Efficiency in Existing Water Supply - Agriculture

Ag Irrigation Efficiency Assistance

The RCD continues to assist growers with conserving water through improved irrigation efficiency and irrigation water use management, leveraging funds from PV Water, CDFA, CA FarmLink, and NRCS. Assistance with nitrogen management (related to water quality protection) is also often incorporated into the irrigation efficiency assistance. During 2025, RCD assisted 29 farming operations at 26 different sites to monitor and improve irrigation scheduling to achieve water conservation. The RCD also provided:

- irrigation system evaluations to identify operation and design improvement opportunities.
- irrigation system design recommendations to optimize irrigation efficiency.
- season-long monitoring of water applied, weather data, and soil moisture to inform growers of how the amount of water applied to their crops compares to the amount of water required by their crops,

- irrigator trainings in English and Spanish
- new online tools and resources available in English and Spanish targeted to provide growers with practical resources for use in the field.
- Limited, targeted outreach to increase grower participation in and awareness of water saving programs that are available.
- technical and financial assistance to implement more efficient water use practices.

Rebates for 2025 totaled approximately \$45,000. Rebates and cost-share from PV Water helps growers purchase and install more efficient irrigation equipment such as lower flow sprinklers, sprinkler check valves, pressure regulators, pressure compensating drip tape, pipe retrofits, soil moisture sensors, irrigation monitoring equipment like flow meters and data loggers, and repairs of leaky pipe joints.

Managed Aquifer Recharge/Recharge Net Metering Program

Managed Aquifer Recharge (MAR) is a landscape management strategy that can help support groundwater supply by capturing stormwater in an infiltration system (typically a strategically designed basin) where it can then infiltrate into the aquifer. Since 2016, the RCD, the University of California, Santa Cruz (UCSC) and private landowners have collaborated to implement three active MAR projects in the Pajaro Valley with funding from DWR, USDA NRCS, California Coastal Conservancy and State Water Resources Control Board. Monitoring results were received for 2 of 3 systems for the 2024 water year. The two systems infiltrated 82 af/yr and 142 af/year in the 2024 rain year. The other 1 system has been moved to a preprogrammed annual infiltration rate of 5 af/yr. Additionally, water quality monitoring indicates that these projects likely help to improve groundwater quality. Data indicate that water infiltrated in the MAR basins had lower Nitrate [NO3-N] levels than ambient groundwater.

The RCD, UCSC, PV Water and private landowners continue to collaborate to implement the Recharge Net Metering (ReNeM) Program in the Pajaro Valley. Funding from the Department of Conservation and the Department of Water Resources has been utilized to plan, permit and design a new infiltration basin to be implemented in 2026. Six new sites were assessed using subsurface imaging and boring (tTEM, CPT) to determine their likelihood for achieveing aquifer recharge. Those results are currently being reviewed to determine what future assessment is needed and where opportunities exist. Finally, RCD and UCSC partnered with Nature 4 Water (N4W) to complete a business plan to guide the future of RENEM program development and initiated philanthropic fundraising efforts to further grow the RENEM program in 2026.

Creation of New Water Supplies – Municipal

San Lorenzo Valley Water District (SLVWD):

- Conjunctive Use Project: Expect to issue a notice of intent (NOI) for an Environmental Impact Report in early 2026 for expanding surface water use within SLVWD's jurisdiction
- Loch Lomond Feasibility Study under District review to determine the best utilization of the SLVWD's 313 acre-foot Loch Lomond allotment.

Scotts Valley Water District (SVWD):

- Continued working with regional partners (City of Scotts Valley, City of Santa Cruz Water and Public Works) developing a strategic direction for maximizing wastewater utilization in the region and for the benefit of Santa Margarita Groundwater Basin.
- Completed construction on the Scotts Valley Transit Center LID Retrofit, Phase 2
 Project. This project is funded by \$1.5 million in Urban and Multibenefit Drought Relief
 Grant to construct.
- Construction is in progress on the regional intertie 1 project.
- Completed equipping of the Sucinto Well and placed this source online in Fall 2025.
- Completed construction of Grace Way Well. Site improvements are in progress in 2025, including installation of a motor control building, site fencing, and connection to the raw water main located on Scotts Valley Dr.

City of Santa Cruz Water Department (SCWD):

- Construction of the Intertie 1 Project is underway. Intertie 1 includes a pipeline and pump station to connect the City of Santa Cruz Water Department system with the Scotts Valley Water District water system which will allow for water transfer and exchanges between two water systems. The project is funded through a DWR grant awarded to the City of Scotts Valley. Construction is expected to be completed in March 2026.
- The Water Supply Augmentation Implementation Plan (WSAIP) adaptive roadmap
 was finalized in 2025, outlining strategies to meet the City's water supply reliability
 goal of having adequate supply to meet all customer demand under plausible, worstcase conditions. The WSAIP technical report will be completed in early 2026 and will be
 incorporated into the City's 2025 Urban Water Management Plan.
- Development of the Santa Cruz Water System Model was completed in coordination with University of Massachusetts, Amherst research group. This tool is being used to support ongoing water supply planning work.
- The Santa Cruz Mid-County Groundwater Agency (MGA) and its member agencies are advancing the five Components of the SGMA Implementation Grant. City components include completion of two aquifer storage and recovery wells at existing well sites, and groundwater modeling to support the evaluation of additional projects and management actions. Both components support the goals of the MGA as well as contributing toward the City's water supply augmentation needs.

- Aquifer Storage and Recovery (ASR):
 - Completed design for conversion of Beltz 8 and Beltz 12 wells to permanent ASR facilities through the aforementioned SGMA grant. Construction of Beltz 12 well ASR facility is underway and is scheduled to be completed in 2026. Construction of Beltz 8 well ASR facility is anticipated to begin in early 2026 with construction to be completed in late 2027.
 - Completed pilot testing of ASR at Beltz 9 well and will begin design of the conversion of Beltz 9 well to an ASR facility in early 2026.
 - To further advance ASR, a Business Case Evaluation (BCE) was conducted to identify a fourth ASR well to pilot and convert to an ASR well in July 2025. The BCE criteria included maximizing water supply, groundwater sustainability, operational flexibility/ease of use, costs, and implementation schedule. The most feasible well to perform pilot testing at next was identified as the City's Beltz 10 Well due to its operational flexibility/ease of use, lower costs, and shorter implementation schedule.

The Soquel Creek Water District (SqCWD)

- The Pure Water Soquel (PWS) Advanced Purified Groundwater Replenishment Project is expected to be operational in 2025. This project will recycle wastewater from the City of Santa Cruz's Wastewater Treatment Facility (SCWWTF) through an advanced water purification process and use it to recharge the critically overdrafted Mid-County Groundwater Basin and protect against seawater intrusion. SqCWD made the following progress on the major components of PWS (conveyance, treatment, and groundwater replenishment) in 2025:
 - Conveyance: The conveyance pipeline conveys a portion of secondary treated effluent wastewater from the SCWWTF to the Advanced Water Purification Facility (AWPF) for treatment and purified water to three (3) Seawater Intrusion Prevention (SWIP) wells for aquifer recharge. Construction of the conveyance pipeline was completed in 2025.
 - Purification Facility: The AWPF is a multi-step advanced water purification process involving ultrafiltration, reverse osmosis, and ultraviolet light with advanced oxidation in addition to a pre-treatment ozonation step and a post-treatment stabilization step. Construction of the AWPF, as well as start-up and commissioning activities were completed in 2025. See Figure 8
 - SWIP Wells: These wells deliver purified recycled water to the Mid-County Groundwater Basin. Construction of the SWIP Wells, as well as start-up and commissioning activities, is expected to be completed in December 2025.
 - Recycled Water Facility: As part of the overall PWS Project, SqCWD is constructing a
 facility at the SCWWTF to produce tertiary treated recycled water for on- and off-

- site non-potable water uses. Construction of the recycled water facility continued in 2025.
- Funding: In 2025, SqCWD continued to work with the funding agencies (State Water Resources Control Board (Prop 1 Groundwater Grant and Seawater Intrusion Control Loan), Bureau of Reclamation (Title XVI Grant Program), and the Environmental Protection Agency (WIFIA Loan Program)).

Figure 8: Pure Water Soquel Treatment Steps including ultra filtration membranes, reverse osmosis, and ultraviolet light.

Groundwater Management

The Sustainable Groundwater Management Act of 2014 (SGMA) went into effect on January 1, 2015 and is a key driver for developing and implementing long-range plans for groundwater sustainability. SGMA required the formation of local Groundwater Sustainability Agencies (GSAs) to prepare Groundwater Sustainability Plans (GSPs) in all of the state's high and medium priority groundwater basins. Upon submittal of a GSP, GSAs have a 20-year implementation timeframe to demonstrate basin sustainability based on meeting locally defined sustainable management criteria. SGMA also requires annual reporting on GSP implementation progress to the Department of Water Resources (DWR) and a comprehensive periodic evaluation of the GSP every five years.

Santa Cruz County has three basins that are subject to compliance under SGMA. For each of these basins, the associated GSAs and their activities towards implementing their respective GSPs in Water Year 2025 are described below.

Santa Margarita Groundwater Agency

Management of the Santa Margarita Basin is overseen by a Joint Powers Authority (JPA) consisting of the County of Santa Cruz (County), the Scotts Valley Water District (SVWD), and the San Lorenzo Valley Water District (SLVWD). This JPA is referred to as the Santa Margarita Groundwater Agency (SMGWA), which is the GSA for the basin. The SMGWA governing board includes two private well representatives, two representatives from each partner agency, and one representative each from the City of Scotts Valley, the City of Santa Cruz, and the Mount Hermon Association. The Santa Margarita Groundwater Basin has experienced a significant historical decline in groundwater levels, particularly in the southern part of the Basin near Scotts Valley and has likely also seen reductions in streamflow. While groundwater levels

stabilized and are no longer declining, they have seen only modest recovery. A groundwater model analysis indicated the need to implement at least modest projects in order to maintain sustainability under future climate conditions. The GSP for Santa Margarita was adopted by the SMGWA Board in November 2021 and approved by DWR in April 2023.

In Water Year 2025, the SMGWA continued monitoring of its network of seven monitoring wells in areas of previous data gaps in the basin. Many of these wells are located near active stream gauges in the basin that are also monitored by SMGWA, which will help improve the understanding of the surface water-groundwater relationship in the basin as required by SGMA. SMGWA submitted its latest annual report to DWR for Water Year 2024 by the April 1, 2025 deadline. In August 2025, SMGWA began the required periodic evaluation of its GSP. The periodic evaluation is due to DWR by January 3, 2027.

Also during Water Year 2025, SMGWA tracked progress by the basin's water supply agencies as they continue to develop their respective projects needed for basin sustainability. Of note, SVWD was awarded grant funding to construct an intertie with the City of Santa Cruz. While the primary purpose of the intertie is to address water shortages during drought or emergency conditions, it can create opportunities for expanded conjunctive use to benefit the basin. Construction of the intertie project is nearing completion. SLVWD continued to take steps to conduct a feasibility analysis of the use of Loch Lomond Reservoir to expand conjunctive use in the basin. Consulting services to support the analysis were procured in 2024.

Santa Cruz Mid-County Groundwater Agency

Management of the Santa Cruz Mid-County Basin is overseen by a JPA consisting of the County, City of Santa Cruz, Soquel Creek Water District and Central Water District. This JPA is referred to as the Santa Cruz Mid-County Groundwater Agency (MGA), which is the GSA for the basin. The MGA governing board includes three private well representatives and two representatives from each member agency. The Mid-County Basin is designated by the State as being in a condition of critical overdraft due primarily to the risk of seawater intrusion into the aquifers. Despite significant improvement of coastal groundwater levels due to water conservation and pumping redistribution, groundwater modeling analyses indicate that additional projects will be necessary to achieve sustainability. The GSP was adopted by the Board in November 2019 and approved by DWR in June 2021.

In Water Year 2025, MGA continued monitoring of seven groundwater wells constructed by MGA and seven stream gauges to improve its understanding of surface water-groundwater interaction. The MGA continued implementation of a non-de minimis well registration, metering, and reporting program. Five wells were initially identified as being required to comply with the program. All of the applicable wells have been registered and the first annual report of groundwater extraction is due at the end of Water Year 2026. Also during the water year, MGA completed the first required periodic evaluation of its GSP. The evaluation was submitted on the January 30, 2025, deadline. Also during the water year, MGA began a funding options assessment for long-term funding sources for SGMA regulatory compliance,

with a report on options expected in late 2025. Finally, MGA member agencies, Soquel Creek Water District and the City of Santa Cruz, continued an optimization study to identify combinations of projects to achieve sustainability in the basin and improve water supply reliability for consumers. Completion of the study is expected in late 2025.

Work continued on a \$7.6 million Sustainable Groundwater Management Act Implementation (SGMI) grant awarded to the MGA by the Department of Water Resources Sustainable Groundwater Management program. The grant supports the implementation of high priority projects identified in the GSP. The individual member agencies are leading the management and implementation of their respective projects. Additional description is available in this report under the lead implementing agencies:

Project Title	Lead Agency	Grant Award	Status
Cunnison Lane Groundwater Well	Soquel Creek Water District	\$1,675,000	Well constructed; treatment plant design underway.
Aquifer Storage & Recovery, Beltz Wellfield	City of Santa Cruz, Water Department	\$1,650,000	Design completed; construction underway
Park Avenue Transmission Main Improvements	Soquel Creek Water District	\$800,000	Completed
Technical Development of GSP Group 1 & 2 Projects	Soquel Creek Water District and City of Santa Cruz	\$1,900,000	Underway
Sustainable Groundwater Management Evaluation & Planning	MGA and County of Santa Cruz	\$1,575,000	Underway

Pajaro Valley Water Management Agency (PV Water)

The Pajaro Valley Water Management Agency is a special district created in 1984 by the California legislature and is the GSA for the Pajaro Valley Subbasin (Basin). PV Water's 2014 Basin Management Plan Update, Basin Management Plan: Groundwater Sustainability Update 2022 (GSU22), and several other key documents, serve as a GSP Alternative which aims to achieve groundwater sustainability by 2040. PV Water's efforts to achieve sustainability directly support beneficial users and uses including drinking water, agricultural irrigation, and

many more. Groundwater routinely provides more than 90% of the basin's water supply with supplemental water sources such as recycled water, managed aquifer recharge water, and beginning in 2025, treated surface water from College Lake serving as the other major sources. PV Water's existing facilities, current projects, and management actions are designed to achieve multiple objectives including providing drought resilience, preserving beneficial uses of groundwater, and enhancing natural conditions. The two biggest uses of extracted groundwater are for domestic consumption and agricultural irrigation. As part of PV Water's GSU22, a well depth analysis of more than 1,150 domestic and agricultural wells was conducted to inform the development of sustainable management criteria to protect beneficial users of groundwater from significant and unreasonable negative impacts, as well as enhance the resiliency of drinking water and irrigation water supplies. The GSU22 is the most current version of PV Water's GSP Alternative, which will be updated approximately every five years following a periodic evaluation. PV Water is preparing the periodic update of its GSP Alternative, the Basin Management Plan: Groundwater Sustainability Update 2027 (GSU27). It is due to DWR in December 2026.

PV Water operates several existing water supply facilities and administers a series of programs to reduce groundwater extractions and help stop seawater intrusion. Supplemental water supply facilities reduce groundwater extractions through the production, distribution, and use of supplemental water supplies in-lieu of groundwater pumping. PV Water also funds and manages a comprehensive water conservation program that aims to improve use efficiencies for both agricultural and domestic water users. It also partners with University of California at Santa Cruz (UCSC), and the Resource Conservation District of Santa Cruz (RCD) on a program called "Recharge Net Metering," in which private landowners develop infiltration basins to capture and infiltrate rainwater runoff into the groundwater basin. PV Water's existing supplemental water supply facilities, the Recharge Net Metering Program, and water conservation program are described in greater detail below.

- Coastal Distribution System (CDS): The CDS is a distribution system composed of nearly 22 miles of pipeline used to deliver supplemental water supplies to farms in coastal areas of the Pajaro Valley. The area currently served by the CDS incorporates approximately 6,100 irrigated acres and is referred to as the Delivered Water Zone or the Delivered Water Service Area. Water delivered through the CDS replaces groundwater that would otherwise be pumped from coastal wells. Delivered water provides "in-lieu recharge" to the Pajaro Valley Basin; helping to eliminate the problems of groundwater overdraft and seawater intrusion, while helping to keep agriculture viable in the Pajaro Valley.
- Harkins Slough Managed Aquifer Recharge and Recovery Facility (Harkins Slough
 Facility): The Harkins Slough Facility diverts surface water from Harkins Slough and
 conveys it to a recharge basin where it percolates into a surficial aquifer of the San
 Andreas Terrace located near the coast. PV Water utilizes a series of wells to recover
 recharged water and deliver it to coastal farms through the CDS. The Harkins Slough

Facility commenced operations in 2002 and has recharged approximately 12,500 acre-feet through October 2025.

- Watsonville Area Recycled Water Treatment Facility (RWF): PV Water constructed the RWF and operates it in partnership with the City of Watsonville. Located adjacent to the Watsonville Wastewater Treatment Plant at the Water Resources Center, the RWF has the capacity to produce 4,000 acre-feet per year of tertiary treated disinfected recycled water. Recycled water is augmented with water from the Harkins Slough Facility, Supplemental Wells, the City of Watsonville's potable water system, and treated College Lake water to increase supply and improve the quality for agricultural irrigation needs. The RWF commenced operations in 2009 and has produced more than 43,350 acre-feet through September 2025.
- **Supplemental Wells:** In 2025 PV Water operated three production wells to augment the delivered water supply and improve water quality. The newest well was constructed as part of the College Lake Integrated Resources Management Project and put into service in August 2025. PV Water intends to bring a fourth supplemental well into service by summer 2027.
- Recharge Net Metering (ReNeM): PV Water, along with program partners from UCSC and the RCD, and participating private landowners, are implementing ReNeM to enhance recharge in the Pajaro Valley. The program incentivizes small scale recharge projects by providing rebates to landowners based on the volume of water infiltrated through infiltration systems. The rebates are intended to help offset maintenance and operation costs incurred by landowners. Currently, the program includes three infiltration basins, with additional sites under evaluation and design. The ReNeM program team is currently evaluating the water year 2025 performance of the three systems. During water year 2024, in which the annual total precipitation was equivalent to the long-term historical average, a combined total of approximately 229 acre-feet was infiltrated.
- Water Conservation: PV Water set a goal to achieve 5,000 acre-feet per year of water conservation when compared to the baseline period of 2006-2010. The program focuses on agricultural water conservation but also provides conservation services for domestic users. The agricultural conservation program leverages numerous technical partners including the RCD, the Natural Resources Conservation Service, the UC Cooperative Extension, the Resource Conservation District of Monterey County, and private consultants. The main components of the program are conservation outreach; partner collaboration, program coordination, demonstrations, rebates for efficient devices/materials; workshops and trainings; an irrigation efficiency program; and irrigation efficiency program evaluation. In March 2024, the PV Water Board of Directors approved a \$1.37 million agreement to fund the agricultural conservation

program support services through June 2027. Over the most recent evaluated rolling 5-year period (2020-2024), total agricultural water use was approximately 5,875 acre-feet less than the baseline period.

While the result of operating the existing facilities and administering these programs has been effective in helping to reduce overdraft and slow seawater intrusion, PV Water is working to construct and implement additional projects and management actions to achieve sustainable groundwater resources and provide resiliency. These additional efforts are described below.

• College Lake Integrated Resources Management Project (College Lake Project): The College Lake Project includes components required to store, treat, and deliver water from College Lake, for use as an irrigation supply in-lieu of pumped groundwater to reduce the rate of seawater intrusion while helping to preserve agriculture. The components include an adjustable weir structure designed to accommodate safe fish passage, intake pump-station, water treatment plant, a 6-mile conveyance pipeline, and two groundwater wells to support project operations. The weir is capable of raising the lake water level by 2.4 feet and increasing the total storage to approximately 1,800 acre-feet. An anticipated annual average of 1,800-2,300 acre-feet will be collected through a screened intake compliant with screening criteria for anadromous salmonids. Water is conveyed to the water treatment plant and then to the CDS where it is utilized in place of groundwater production. PV Water began construction of the College Lake Project in spring 2023 and began commissioning the facility and delivering water to customers in June 2025. Substantial completion of the project is anticipated to occur in fall 2025.

Figure 9: College Lake Weir System installed by the Pajaro Valley Water Management Agency.

Watsonville Slough System Managed Aquifer Recharge and Recovery Project (WSS-MARR): WSS-MARR includes upgrades of the existing Harkins Slough Managed Aquifer

Recharge Facility (Harkins Slough Facility) and construction of the Struve Slough Project, a new managed aquifer recharge and recovery project. WSS-MARR includes project components to divert, convey, store, and recover surface water for use as an irrigation supply in-lieu of pumping groundwater. The components include upgrading the existing Harkins Slough Facility to install fisheries-compliant intake screens, upgrading the pump-station, development of a new recharge basin, and constructing series of recovery and monitoring wells. The Struve Slough Project includes a new screened intake on Struve Slough, a pumping-station to be located adjacent to the slough, as well as an approximate 7,150-foot conveyance pipeline. Collectively, WSS-MARR is designed to yield an estimated annual average of approximately 2,250 acrefeet for recharge and subsequent recovery. In March 2025, PV Water's Board of Directors certified an addendum to the certified environmental impact report for the project and adopted modifications to the project. PV Water has completed the 100% designs and is advancing efforts to obtain all necessary permits including a 4,000 AFY water right on Struve Slough and a Coastal Development Permit. The Agency is also in the process of procuring all necessary property rights for the project Construction of the Project is anticipated to begin in 2027.

Increased Recycled Water Deliveries: PV Water continues efforts to increase recycled water deliveries to customers. PV Water is working to achieve this by increasing demand for recycled water and increasing storage to supply more water during periods of high demand. The goal is to increase demand by approximately 1,000 acrefeet per year and shoulder season demand by approximately 250 acre-feet per year over 2011 levels. Completed infrastructure improvements developed to increase recycled water deliveries included the construction of a 1.5-million-gallon storage tank, approximately 3.2 miles of additional CDS pipeline; an expanded RWF filter train; and improvements to the distribution pump station. PV Water continues to work closely with customers to maximize deliveries and increase recycled water use. In addition, condition and operational assessments of the RWF and the City of Watsonville Wastewater Treatment Plant have been conducted and will guide improvements in reliability and process performance in the future. These improvements began in 2025 with replacement of variable frequency drives and modifications to electrical equipment to enable connection to standby power during emergencies and planned shutdowns.

Guided by the GSU22 and future updates of the GSP Alternative, PV Water will continue efforts to achieve sustainable groundwater resources. Annual and periodic assessments every five years will evaluate basin conditions against sustainable management criteria established to provide a resilient and sustainable groundwater basin. The next major update and periodic evaluation is planned to begin in late 2025 and culminate in an updated GSP Alternative submitted by December 24, 2026.

County's Roles in Groundwater Management

Despite not managing significant water supply, or large augmentation projects, the County has served an important role in supporting groundwater management. This role includes oversight of wells, and groundwater data collection and synthesis, in addition to being a JPA signatory to both the MGA and SMGWA. The County has served as the lead in procuring and managing contracted services that leverage opportunities to strategically pool resources to benefit both basins. The County led a process to develop a regional data management system (DMS) to help the GSAs meet the requirements of SGMA, and additionally to collect and organize data collected by all of the water agencies in the County. The system can be viewed online at sccwaterdata.us/#/html/home. There are a few advantages to the regional system: it provides a robust storage system for critical historical data; it makes it easier to compare data across agencies; and the web portal makes it easy for interested parties to view results.

Wells GIS Layer Update (Nearing Completion 2025)

County staff developed an Al-powered optical character recognition workflow to automate data extraction from well completion reports, supplemented by custom Python scripts for post-processing, data cleaning, classification, and matching. Integrated with quality assurance checks and GIS workflows, the project is modernizing the County's wells layer by improving data accuracy, completeness, and spatial reliability. Key fields such as well type, depths, screen intervals, and location have been standardized, geocoded, and supplemented where previously incomplete or missing. The resulting well layer will provide a muchimproved foundation for the County and partner agencies to conduct analysis, modeling, and decision-making. Because the Al model and scripts were trained on all California DWR well completion report templates, they are adaptable for statewide use, enabling rapid updates and modernization of other counties' well databases while providing a pathway for future Al-assisted data integration.

County of Santa Cruz Well Ordinance Update

Santa Cruz County Code (SCCC) Chapter 7.70 specifies measures for the siting, construction, and destruction of wells to protect groundwater resources and provide suitable water supply for the intended use. SCCC Chapter 7.73 specifies yield and water quality requirements for individual water systems that predominantly utilize wells. The last significant revisions of Chapter 7.70 and Chapter 7.73 were completed in 2009 and 1993, respectively. After a teo-years long process led by County Water Resources staff, the Board of Supervisors finalized the adoption of updated regulations to their well ordinance in early 2025. These changes went into effect in July 2025 after they were approved by the Coastal Commission.

The following are the significant changes to Chapter 7.70:

- Additional measures are added to reduce impact of wells on groundwater resources, streams and associated public trust resources, karst areas, nearby wells, and designated groundwater extraction concern areas;
- 2. Different levels of review and protective measures for different types of wells are provided for, including discretionary review and potential for denial of Tier 4 wells;

- 3. Explicit provisions are added for review and comment on well applications by affected water agencies and groundwater sustainability agencies;
- 4. Provisions are added for regulation of soil borings and stormwater infiltration devices;
- 5. Metering of all newly installed non domestic wells will be required;
- 6. Penalties for code violations are added; and
- Provisions are added for promulgation of specific policies for implementation of code requirements to allow more flexibility for implementation and adjustment of specific elements of effective policy.

The following are the significant changes proposed to Chapter 7.73:

- 1. More extensive water quality testing for individual water systems: Title 22 constituents, plus other constituents in water quality concern areas;
- 2. More stringent yield testing in known limited yield areas;
- 3. Recordation of a notice on the deed for new wells with limited yield or quality;
- Individual Water System requirements also apply to non-domestic uses and additional testing is required for change or expansion of use;
- 5. Water quality testing and yield testing at the time of property transfer to inform the buyer.

Updates are provided through the website:

scceh.com/NewHome/Programs/WaterResources/WellOrdinanceUpdate.aspx

Small Water Systems and Domestic Wells

The Santa Cruz County Drinking Water Program oversees 106 active small water systems (SWSs), including water systems with 5-199 residential connections and systems serving at least 25 people per day for 60 or more days per year. These systems include housing developments and mutual water companies, in addition to facilities such as schools, office buildings, outdoor camps, and stores. SWSs can have greater water supply vulnerabilities than larger systems because they tend to have few sources, often just one well or spring, and a small population to bear the cost of repairs for their aging water sources and distribution systems.

The water quality and reliability of these systems is of critical importance to the County residents and visitors that depend on them. Recent extreme weather events since 2020 (e.g., the CZU Lightning complex Fire and winter storms of 2023) have exposed and heightened some of the vulnerabilities of these systems, such as lack of redundancy and aging infrastructure. Recent legislation such as SB 552 (drought planning for small water suppliers and rural communities) require SWSs, subject to funding availability, to implement specific resiliency measures such as joining a mutual aid network, obtaining a backup source of electricity, and securing additional water sources, if feasible.

While drinking water quality for SWS in Santa Cruz County is generally very good, water quality challenges exist for some systems. Nitrate contamination is a concern, and primarily affects areas in South County near agricultural land uses. Drinking Water Program staff work

closely with a number of SWSs in this area which provide nitrate removal treatment to ensure water quality standards are met.

Another contaminant of local concern is Hexavalent Chromium, also known as Chromium-6. Chromium-6 occurs naturally in the Aromas Red Sands aquifer that is found in parts of Aptos and Watsonville. Drinking Water Program staff are working with 7 small water systems in this area with elevated levels of Chromium-6 to respond to the newly created Maximum Contaminant Level (MCL) of 10 micrograms per liter. Staff will be working with the affected systems to review proposed treatment solutions that will provide the affected residents with a source of water that meets the new requirements by October 1, 2028.

Per- and polyfluoroalkyl substances (PFAS), also known as "forever chemicals", are another emerging group of contaminants. These substances are found in many consumer products, including nonstick cookware and waterproof coatings, and end up concentrating in landfills. The EPA implemented a rule in 2024 requiring sampling for PFAS by 2027 and treatment by PFAS have been found in elevated levels in wells serving some SWSs adjacent to the Buena Vista Landfill. One of these facilities has an operational PFAS treatment system that has successfully removed the PFAS contaminants, and another has received a grant to address this issue as described below.

The County General Services Department has secured an \$800,000 grant from the Department of Water Resources' (DWR) Proposition 1 Implementation Grant Program via the Integrated Regional Water Management Program to install a treatment system for Chromium-6 and PFAS, and to study options to improve source quality and reliability at the Rountree Facility in Watsonville. The system is served by a single well and is proactively working to address these emerging contaminants and improve the resiliency of the system.

County staff are also involved with coordinating several long-term projects to improve water supply reliability for SWSs. Renaissance High School is currently working to consolidate with the Soquel Creek Water District due to a lack of backup sources for its single supply well, and water quality concerns, including hexavalent chromium. The Crestwood Heights Water Association is working to consolidate with the City of Watsonville due to diminishing water supply from their source wells and a lack of funds to upgrade their system.

The County has also been awarded \$97,800 in grant funding from DWR's Small Community Drought Relief Program for improvements to the Waterman Gap water system, a small water system at the northern edge of the County in Boulder Creek. The current stream source has declined in flow, and the system's backup wells have limited capacity. These funds will cover the cost of reconstructing a water line to an existing stream intake on Little Boulder Creek and installing four storage tanks to improve the system's ability to provide a reliable supply to residents.

Drinking Water Program staff continue to host Small Water Systems Forum meetings to provide regulatory updates to SWSs and encourage discussion and collaboration between these systems. One forum meeting was held in 2025, which was a joint meeting with the

Water Advisory Commission. This meeting sought feedback from the small water systems on the challenges with consolidation, while also providing results from a consolidation study completed by County staff.

Services Offered by the County

On December 1, 2021, the Water Advisory Commission (WAC) voted to take responsibility for implementing Senate Bill (SB) 552. SB 552 required the County to write a plan that includes potential water shortage risk analysis and proposed interim and long-term solutions for State Small Water Systems and domestic wells. This plan is now referred to as the Santa Cruz County Drought Response and Outreach Plan (DROP). The Water Quality Specialist and Water Resource Planner in the Water Resources Division have taken the lead on the implementation of the DROP.

Since the Board of Supervisors approved the DROP in December of 2022, staff created web portals for both <u>Household Well Assistance</u> and <u>Small Water Systems</u> that utilize the information gathered in creating the DROP. These pages are intended to act as a single repository for both informational and direct support resources. These webpages, incorporated feedback from private well owners and Small Water Systems regulated by the county.

The County secured a \$600,000 grant from the California State Water Resources Control Board to offer water quality services to financially qualified households that are served by a household well. These services include testing well water and supplying alternative water sources when necessary, such as bottled water and in-home treatment systems. To identify households that could utilize these free services, Santa Cruz County began a partnership with the Central Coast Drinking Water Well Testing Program, a regional program from the Bay Foundation and Regional Water Quality Control Board that provides free well testing to all county residents. The goal of the Central Coast Program is to ensure that households are aware of their drinking water quality and improve understanding of groundwater quality on the Central Coast. By coordinating these two programs, Santa Cruz County was able to reach more residents and provide faster support to financially qualified residents. Contracts are in place to provide residents meeting income thresholds with the following services:

- 1. Emergency water hauling for wells that go dry due to drought conditions
- 2. Bottled water deliveries
- 3. Point of Use Treatment system installations
- 4. Additional water quality testing, including PFAS

Residents wishing to apply for these services can apply here: <u>Water Quality Assistance</u> <u>Application</u> (<u>Solicitud de Asistencia para la Calidad del Agua</u>).

To raise awareness of the resources above, and services already offered by the County such as well soundings, staff created and distributing mailers to parcels served by a domestic wells and completed in-person outreach in areas with water quality concerns that might serve residents meeting the income threshold.

In 2023, the County also received an additional \$125,000 grant from DWR to focus on gaps in the DROP- specifically, a comprehensive wells GIS layer, a connection feasibility analysis for small water systems, and enhanced guidance on the consolidation process. As of 2025, both major deliverables are nearing completion.

Santa Cruz County Environmental Health was awarded funding through the SWRCB Safe and Affordable Funding for Equity and Resilience (SAFER) grant program and the DWR Urgent Drinking Water grant in 2021 and the contract was executed in 2023. This funding will be used to make progress to implement this plan, beginning with the tasks outlined in **Error! Reference source not found.** below (subject to change as the work progresses).

2025 DROP Implementaion Highlights

Connection Feasibility Analysis for Small Water Systems (Completed 2025): County staff completed a GIS-based analysis evaluating physical and managerial consolidation opportunities for State Small and Public Water Systems across the County. The physical consolidation assessment modeled pipeline infrastructure costs using key factors such as distance to large water mains, terrain slope, elevation differences affecting pressure, and widespread geotechnical constraints including landslides, liquefaction, expansive soils, high groundwater, and fault crossings. Distance emerged as the primary cost driver, with estimated pipeline costs averaging \$3.4 million per system and ranging widely depending on route complexity. Notably, over half of the systems share potential pipeline paths with others, creating significant opportunities for cost-sharing through coordinated projects. The analysis also identified proximity-based connection opportunities for over 600 parcels served by individual domestic wells located within a feasible distance of large water system infrastructure. The managerial consolidation analysis, based on driving times between systems, revealed that most public water systems are within close proximity of one or more partners, supporting feasible administrative and operational integration as a lower-cost path to resilience.

Consolidation Process Brochure (In Progress): County staff are developing a consolidation guidance document for small water systems that may be considering consolidation. This guidance document will incorporate the connection feasibility analysis above, and will be structured around the feedback provided by the small water systems at the April meeting of the Water Advisory Commission. The intent of the guidance document will be to help struggling small water systems understand the steps needed to prepare for a consolidation with a large water system. County Staff intends to have the guidance document completed by the end of 2025.

Specific Water System Assistance

Big Basin Water Company (BBWC) is a privately-owned utility serving 540 households with drinking water and 30 parcels for wastewater management in the San Lorenzo Valley. BBWC was beset by years of financial mismanagement and lack of investment in critical infrastructure, leading to repeated service interruptions for customers, difficulty rebuilding for

CZU survivors, and litigation by the State Water Resources Control Board on the drinking water side and Regional Water Quality Control Board on the wastewater side. Since taking over in 2023, and with financial assistance from the State through a grant to the County of Santa Cruz, the court appointed Receiver has made significant strides in improving the system operations:

- Through a contract with Cypress Water Services, the drinking water system is functioning now with few water outages or boil water notices. The well, which previously ran 24/7 now only needs to run 8-10 hours per day to meet demand, due largely to improvements in leak repair.
- Rate increases were approved by the California Public Utilities Commission, and the billing system has been updated.
- A comprehensive needs assessment⁵
 was developed by Moonshot Missions
 that evaluates the further upgrades

Figure 10: Big Basin Water Town Hall panel held in November 2025.

- necessary. GEI Consulting is developing a water source feasibility study to determine what options there are for augmenting supply. They are also providing engineering designs to increase the capacity of the intertie with SLVWD.
- The Receiver has talked with several agencies and organizations about prospective long-term purchase/merging of the system.
- The wastewater system is now operated by the County of Santa Cruz CSA 7.
- County staff continue to regularly with the regulatory agencies as well as elected
 officials to work towards a sustainable resolution to the challenges of the BBWC.
- The Reciever and District 5 Supervisor held a Town Hall meeting on November 17, 2025 to provide updates to the community (Figure 10).

Waterman Gap is a State Small Water System at the Northwest corner of the County. Using a grant from the California Department of Water Resources (DWR), the County was able to support the water system in some critical upgrades. The project included reconstruction of a 9,500-foot, 1.5-inch diameter PVC supply line and diversion point in Little Boulder Creek and the installation of four (4) 4,995-gallon polyethylene tanks to supply the existing Waterman Gap water system (see Figure 11).

⁵ www.bigbasinwater.com/announcements/c64s18khew63q9snudmdzmq1cwft2y

Figure 11: New intake and tanks for Waterman Gap water system

Section 2: Water Quality of Santa Cruz County

As shown in Figure 12, several watersheds within Santa Cruz County have been identified by the State of California as having impaired waterbodies pursuant to Section 303(d) of the Federal Clean Water Act (CWA)⁶. By definition, 303(d) listings and adopted TMDLs are related to impacts on one or more beneficial uses and the need to control the source(s) of these impairments. The Regional Water Board has oversight over these waterbodies and manages water quality through implementing Total Maximum Daily Loads (TMDLs) that are incorporated into Basin⁷ Plans, and the National Pollutant Discharge Elimination System (NPDES)⁸ permit program, including the Storm water (MS4)⁹ program. The County of Santa Cruz and the Cities of Santa Cruz, Capitola, Scotts Valley, and Watsonville conduct extensive water quality monitoring and there is ongoing collaboration to exchange data among the individual stakeholders.

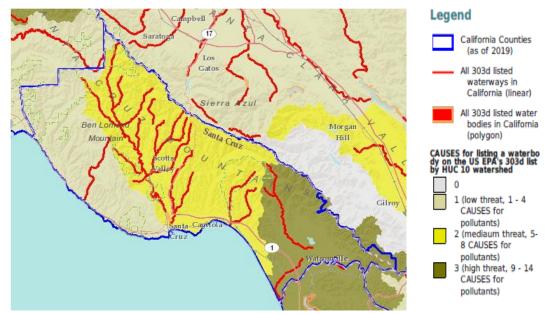


Figure 12: Map of watersheds with impaired water bodies in the County as identified by the Central Coast Regional Water Quality Control Board

Santa Cruz County Water Quality Program and Laboratory

⁶ https://www.waterboards.ca.gov/water_issues/programs/tmdl/background.html

https://www.waterboards.ca.gov/centralcoast/publications_forms/publications/basin_plan/

⁸ https://www.waterboards.ca.gov/water_issues/programs/npdes/

⁹ https://www.waterboards.ca.gov/water_issues/programs/stormwater/municipal.html

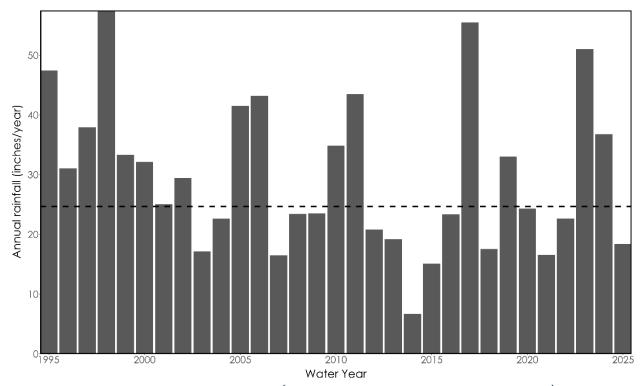


Figure 13: Cumulative rainfall for water years (starting October 1 and ending September 30) from CIMIS station 104 at De Laveaga. Dotted line indicates median over the thirty year period.

This year was a mild water year following two years of relatively high rainfall (Figure 13). The program routinely visits over 100 sites located in streams, rivers, lakes, and beaches throughout the county at weekly, monthly, and quarterly intervals depending on mandates, public health advisories, and logistical constraints (Figure 14). Over 1000 grab samples were collected this year as a part of routine monitoring efforts, with additional samples analyzed for special studies and fees for service. Coastal sites are monitored for fecal indicator bacteria in accordance with the California Beach Water Quality Program¹⁰. Freshwater sites are also monitored for fecal indicator bacteria along with other geochemical and physical parameters (e.g., Nitrate, ortho-phosphate, sediment, etc.).

While maintaining a standard suite of analytes, the lab is always improving and increasing capacity to run new constituents that improve understanding of water quality issues. The lab is currently adapting a protocol to measure chlorophyll a, an important metric correlated to the abundance of phytoplankton. Measurements of chlorophyll a will provide much needed insights into harmful algal bloom dynamics. Additionally, the lab has begun a pilot study to determine the sources of fecal indicator bacteria in the Watsonville Slough System using digital PCR. While the lab has used dPCR to assess the relative abundance of human DNA in water samples in the past, this is the first time that the program will use dPCR for TMDL management and assessment of best management practices. Furthermore, this ongoing

¹⁰ https://mywaterquality.ca.gov/safe_to_swim/

microbial source tracking study will also determine the relative contributions of fecal indicator bacteria from cows, seagulls, and dogs. These data will help to differentiate between controllable and non-controllable sources of bacteria in Watsonville Slough and more accurately assess the status of TMDL attainment.

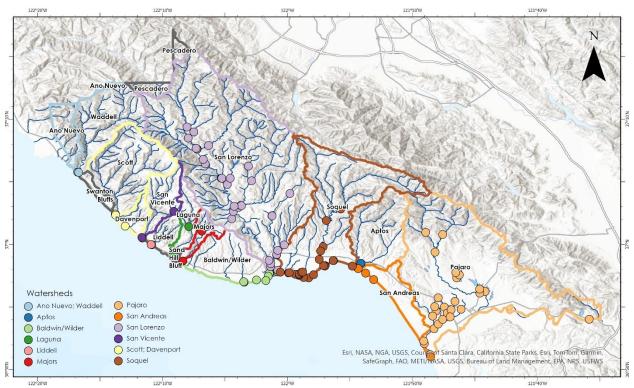


Figure 14: Santa Cruz Water Quality Monitoring Program routine monitoring site locations within respective Santa Cruz County watersheds. Each point represents the location where grab samples are collected, while lines represent watershed boundaries.

Harmful algal blooms

Harmful algal blooms (HABs) are caused by marine or freshwater microalgae. HABs are an ongoing issue worldwide and are projected to become more frequent and persistent due to anthropogenic impacts (i.e., climate change, nutrient enrichment). During a harmful algal bloom, microalgae produce toxins that can kill aquatic wildlife and are harmful to human health. In Santa Cruz County, freshwater HABs regularly occur during summer months in inland lakes and coastal lagoons. This year, blooms of *Microcystis* sp. producing the toxin microcystin were concentrated at Pinto and Kelly Lakes, both of which reached hazardous levels in August based on thresholds set by the EPA and guidance of the California Cyanobacterial and Harmful Algal Bloom Network¹¹ (Figure 15). Pinto Lake was closed on August 13, 2025 and remained closed through the end of this water year (Figure 16). While monitoring also occurs at Kelly Lake, this lake is private and the county has limited ability to

[&]quot; https://mywaterquality.ca.gov/cyanohab/

close access, but provides results on microcystin toxin concentrations and public health guidelines to the community living on the lake on a weekly basis. Throughout the summer Corcoran, Moran, and Schwan Lagoons were also periodically sampled for the presence of nuisance species known to produce toxins. Microcystin was detected at all three lagoons during the summer and anatoxin was detected once at Schwan lagoon. However, levels never reached health advisory thresholds.

Figure 15: Cyanobacterial blooms at Pinto Lake (left) and Kelly Lake (right), summer 2025

The water quality laboratory monitors the presence and tracks the progress of blooms using both qualitative microscopy (Figure 17) and biochemical analyses that quantify toxin concentrations. Briefly, from early spring through fall, samples are collected regularly and checked for the presence of toxin producing genera. If visualized, then rapid plate kits are used to quantify toxin concentrations. The lab has capacity to measure microcystins, anatoxins, cylindrospermospin, saxitoxin, and domoic acid. Importantly, this approach allows for early detection and rapid response to the presence of toxin producing species. There is always site-to-site variability in the overall density of microorganisms/toxins and differences in the duration of the cyanobacterial bloom even within the same body of water. For instance, at Pinto Lake, the County Dock (PL16) generally has lower microcystin concentrations than other areas of the lake, likely due to prevailing winds and algal accumulation (Figure 16).

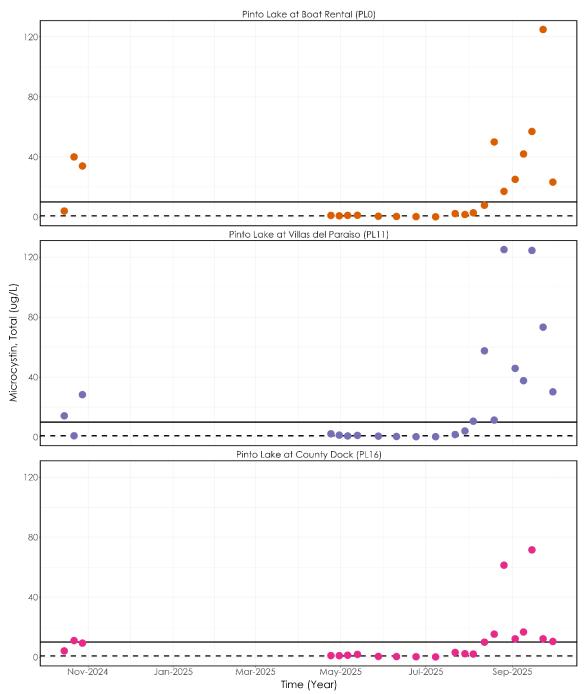


Figure 16: Total Microcystin concentrations ($\mu g/L$) at County Sites: PLO (Pinto Lake at Boat Rental), PL11 (Pinto Lake at Villa del Paraiso), and PL16 (Pinto Lake at County Dock). Black dashed lines indicate 0.8 $\mu g/L$ TMDL threshold. Solid black line indicates 10 $\mu g/L$, the threshold at which the County of Santa Cruz and City of Watsonville enact management actions for lake closure.

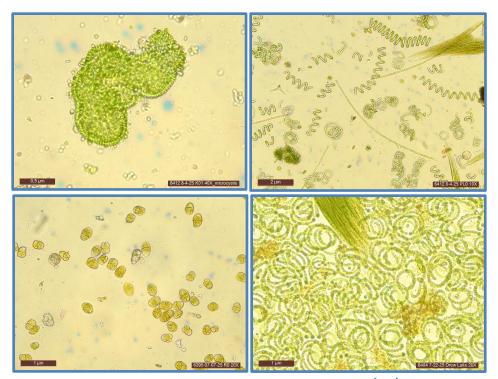


Figure 17: Photomicrographs close up of microcystin at Kelly Lake Dock (K01) upper left; phytoplankton community at Pinto Lake City Dock (PL0) upper right; Akashiwo sanguinea from Corcoran Lagoon (R0) bottom left; and Aphanizomenon (rod shaped alga) and Dolichospermum (circular alga) from Drew Lake (Drew-2) bottom right. Courtesy of Eric Baugher, County of Santa Cruz.

Appearance of a red tide (marine HAB) started on July 15th, 2025. This event was short lived (~1 week). The most impacted beaches were New Brighton, Seacliff, Rio del Mar, and Platform. The dominant species of red tide phytoplankton found were Akashiwo sanguinea, Alexandrium, and Psuedo nitzschia (Figure 18). Elevated levels of domoic acid were measured in ocean water samples taken during the bloom. Domoic acid is responsible for marine mammal distress as the neurotoxin accumulates within the fish that they feed on and biomagnifies within their nervous system, affecting their brain and heart. Saxitoxin is another neurotoxin that is highly potent and causes paralytic shellfish poisoning in humans. Therefore, the ban on shellfish harvesting from May 1 to October 31 is always in place. It was more important to note the ban this year with the active red tide and phytoplankton responsible for paralytic shellfish poisoning.

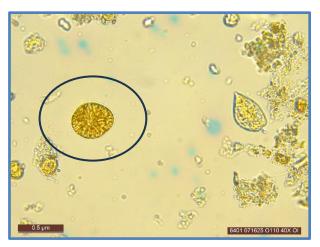


Figure 18: Photomicrographs close up of Akashiwo sanguinea at Seacliff Beach (O140) upper left; Alexandrium at Rio Del Mar Beach (O110) upper right; and Pseudo nitschia at Seacliff Beach (O140) bottom. Ellipses highlight alga specified. Courtesy of Eric Baugher, County of Santa Cruz

Beach Water Quality

Water quality in 2024-2025 at the County's beaches showed seasonal and episodic variability due to changes in rainfall and ocean conditions. 624 samples were collected across 47 sites spanning south county at the mouth of the Pajaro River to as far north as Waddell Creek Beach. Samples were generally collected before or 72 hours after measurable rainfall to avoid sampling when water quality is known to be degraded (Figure 19). Health advisories were posted to the Santa Cruz County Water Quality website when E. coli values exceeded 400 MPN/100mL, total coliforms exceeded 10,000 MPN/100 mL, and/or Enterococcus exceeded 104 MPN/100mL. At select high visitation beaches in the City of Santa Cruz, permanent water quality signs are also posted to alert the public to a health advisory on site. Public health messaging about rain events and water quality are permanently posted to the county's beach advisory website. Any elevated readings were re-tested to determine persistence of elevated fecal indicator bacteria and/or to remove the health advisory when levels fell below health advisory thresholds. In general, while fecal indicator bacteria are generally correlated, water quality thresholds are not usually exceeded for multiple

parameters. For instance, at Cowell's beach (Figure 20a) health advisory thresholds for total coliforms and E. Coli were not exceeded this water year, however, the health advisory threshold for Enterococcus was exceeded twice (once in February and once in July). However, at Capitola beach at Soquel Creek, health advisories for all three fecal indicator bacteria were issued at the same time twice this water year (Figure 20b). This suggests that different factors may control fecal indicator bacteria at different locations.

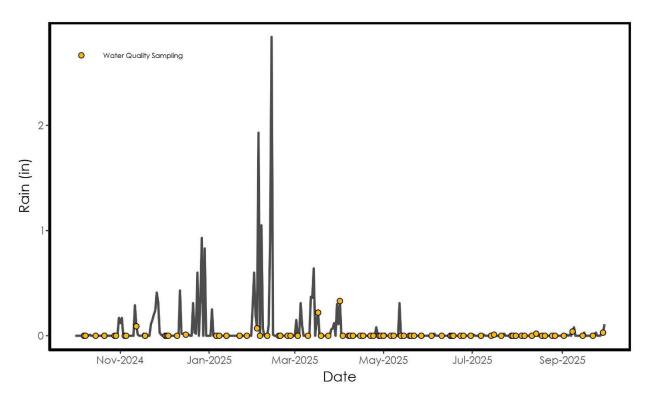


Figure 19: Cumulative daily rainfall for CIMIS station 104 at De Laveaga from October 1, 2024 through September 30, 2025

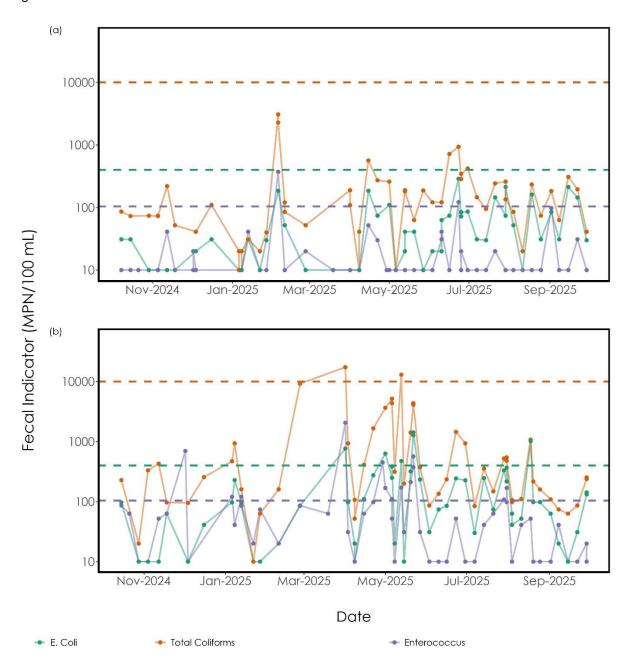


Figure 20: Timeseries of fecal indicator bacteria from (a) Cowell's Beach and (b) Capitola Beach at Soquel Creek during the 24-25 water year. Green indicates E.Coli, orange indicates Total Coliforms, and purple indicates Enterococcus. Dashed lines show health advisory.

Local Area Management Program (LAMP) 5-year assessment

A multi-year assessment of the LAMP program was conducted this year to fulfill requirements of the State Onsite Wastewater Treatment Systems (OWTS) Policy. Although OWTS exist throughout Santa Cruz County, the highest density of systems occurs in the Santa Cruz Mountains along the tributaries and mainstem of the San Lorenzo River. To complement an assessment of OWTS permitting data, the water quality monitoring program conducted analyses to determine whether changes in nutrients (nitrate) and pathogens (E. coli) have occurred over time in the San Lorenzo River watershed, presumably due to LAMP management practices. Nitrate and pathogens are two of the main surface water quality parameters that can be affected by onsite wastewater disposal and were therefore the main focus of this water quality assessment.

Robust statistical analysis of water quality monitoring data can be problematic due to unevenly spaced sampling and gaps in data collection that commonly occur due to a variety of logistical constraints. Therefore, a recent technique was developed to analyze these types of datasets by first using general additive models to fill in gaps in time series data and then utilize meta-regression to test for statistical trends. This approach was used to analyze trends in nitrate time series over long (30-years) and short (5-year) intervals. In general, data suggest that in the upper portions of the San Lorenzo River and the tributaries that empty into the San Lorenzo River, nitrate concentrations have declined over the past 30 years (Figure 21). In the mid-section of the San Lorenzo River and the tributaries that empty into the San Lorenzo River, nitrate concentrations have remained the same or increased over the past 30 years (Fig. 10). In the lower section of the San Lorenzo River and the tributaries that empty into the San Lorenzo River, nitrate concentrations have declined over the past 30 years (Figure 21). Nitrate concentrations have also generally declined over the past 30 years within the Carbonera and Branciforte Creeks that drain into the San Lorenzo River (Figure 21). Over most short time periods (i.e., 5 years) we were unable to detect significant trends in the data. This suggests that long-term data are necessary to assess the effectiveness of programs like LAMP which are most likely to result in small magnitude changes over time.

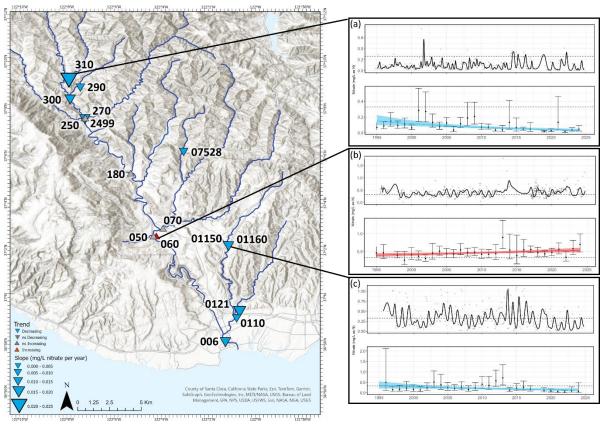


Figure 21: Trends in long-term (>28 years) nitrate concentrations during the dry season (June-September). Nitrate concentrations are declining in the northern portion of the watershed, represented by (a) Site 310, and in the Carbonera/Branciforte creeks regions, represented by (c) Site 01160. While nitrate concentrations are increasing at site 060, shown in (b). Upper panels show time series of nitrate concentrations over time (gray circles indicate grab samples, black line indicates GAM model fit). Lower panels show extracted dry season means and confidence intervals. Blue lines indicate declining nitrate concentrations over time, while red lines indicate increasing nitrate concentrations over time.

The two main criteria defined in the San Lorenzo River pathogens TMDL are: 1) 10% of pathogen samples within a 30 day period should not exceed the single sample health hazard threshold for E. Coli and Fecal Coliforms (i.e., 400 MPN/100mL) and 2) 30-day geometric mean of five or more E. Coli samples must be below 200 MPN/100mL. Unfortunately, due to logistical constraints, time series of geometric means that meet these criteria only exist for a handful of sites, but do not extend into 2024. Therefore, to evaluate current trends (2011-2024) in fecal indicator bacteria over time, we used logistic regression to assess how the probability of exceedance in E. Coli has changed over time. A probability of 0.1 is equivalent to 10% of samples exceeding the health advisory threshold. We did not detect significant trends in exceedances for any sites within the San Lorenzo River watershed and at only a single site (Aptos Creek at Mouth) across all datasets. Although pathogens do not appear to be declining over time, it is important to note that these data are not only highly dynamic but also exhibit a high degree of uncertainty (i.e., large error around each measurement). Therefore, it may be difficult to detect trends in these data at the current sampling frequency. Another issue with ongoing analysis of E. coli or Fecal Coliforms is that these bacteria can

come from a variety of sources, some controllable (e.g., septic system management) and other non-controllable (e.g., wildlife). However, health risk often differs depending on the source of the bacteria, with human sources leading to higher risk of illness in humans. Therefore, efforts are underway to determine the relative abundance of pathogens that originate from human fecal material and whether certain environmental conditions can predict whether pathogens will be mostly of human origin vs other sources. These studies will provide critical information to help improve best management practices that aim to reduce bacterial loads and improve water quality.

Battery Fire Response

On January 16, 2025 the Vistra Moss Landing Power Plant in Monterey County caught fire releasing potentially harmful heavy metals into the atmosphere. In order to characterize the magnitude and extent of heavy metal deposition in Santa Cruz County lakes and estuaries the Water Quality Lab collected water and sediments at key lake and estuarine habitats closest to the south Santa Cruz county boundary. Three lakes (Pinto, Kelly, Drew) and one region of wetlands (Struve, Harkins, and Watsonville sloughs), hereafter referred to as Watsonville slough, were chosen to collect surface water samples due to their proximity to the fire, ecological and economic importance, and the presence of long-term water quality monitoring data. Due to a lack of historical data on heavy metals, surface water samples were also collected at three additional water bodies (Antonelli Pond, Forest Lake, Loch Lomond reservoir) in Santa Cruz County to serve as control sites (i.e., provide background levels of heavy metals unassociated with the battery fire) that are presumably outside the area of heavy metal deposition. In addition to surface water investigation, Pinto Lake and Watsonville slough were selected as ideal locations to conduct additional sediment sampling. Metals detected in surface water and sediment samples were below U.S. Environmental Protections Agency screening thresholds, with the exception of elevated manganese levels at Drew Lake, Watsonville Slough and Antonelli Pond (Figure 22). However, these elevated levels were not consistent with deposits from a battery fire and are likely due to natural or other anthropogenic sources. Importantly, control samples did not differ from sites close to the battery fire, except for manganese and lithium. Interestingly, lithium was actually higher at control locations, a result that is not consistent with excessive heavy metal deposition at sites close to the battery fire. Follow up testing for heavy metals may be useful in contextualizing the results from this sampling event or to provide baseline estimates for future events.

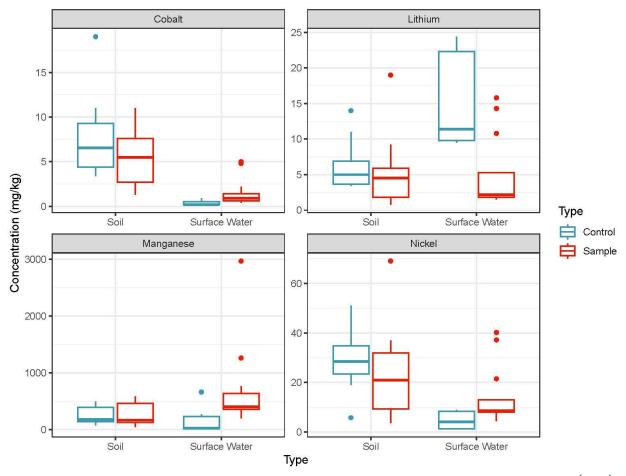


Figure 22: Boxplots of heavy metal concentrations in soil and surface water samples for control (blue) and sample (red) sites. Thick horizontal line depicts the median, box shows the interquartile range, and upper to lower whiskers show the %95 confidence interval with dots as outliers.

Drinking Water Quality and Supply Protection

San Lorenzo Valley Water District (SLVWD)

• Required water quality monitoring through the Unregulated Contaminant Monitoring Rule (UCMR5) was completed.

Scotts Valley Water District (SVWD)

- In support of the intertie 1 project, SVWD and SCWD staff is conducting a Disinfection By-Products formation potential study. Hydraulic modeling was conducted to determine approximate water age at extremities of the SVWD water system under the scenario of receiving SCWD water from the GHWTP. A bench test study of DBP formation potential is being conducted based on raw water supply of SCWD GHWTP water, and approximate age in SVWD's distribution system.
- Enhanced distribution system corrosion control monitoring program to include biweekly EPTDS pH/phosphate monitoring. Added 2 new distribution system sample sites to SVWD's quarterly corrosion control monitoring plan.

City of Santa Cruz Water Department (SCWD)

- Processed over 42,000 water samples testing for microbial, inorganic, organic, pesticides, herbicides, and radioactive contaminants.
- Continued ongoing monitoring of the Loch Lomond (4400912) and Santa Cruz (4410010) potable drinking water systems in compliance with drinking water permit regulations and bacteriological sample siting plan.
- Continued ongoing management and monitoring of Loch Lomond Reservoir for cyanobacteria and cyanotoxins.
- Executed the Santa Cruz Water Department's first nutrient-mitigation alum application at Loch Lomond Reservoir.
- Continued ongoing monitoring of raw source water and treated finished water for unregulated contaminants of emerging concern such as Per- and polyfluoroalkyl substances (PFAS) and pharmaceuticals and personal care products.
- Published the triennial 2025 Public Health Goals Report
- Published the 2024 Annual Water Quality Report in English and Spanish.
- Completed the initial monitoring requirements to comply with the final National Primary Drinking Water Regulation (NPDWR) for six PFAS.
- Completed the initial monitoring requirements to comply with the California State Water Resources Control Board Division of Drinking Water's (SWRCB-DDW) hexavalent chromium Maximum Contaminant Level (MCL).
- Maintained California State Environmental Laboratory Accreditation Program
 Certificate of Environmental Laboratory Accreditation for drinking water. Continued
 6ppd monitoring in the San Lorenzo River in support of NMFS anadromous salmonid recovery efforts.

Soquel Creek Water District (SqCWD)

Replacement of Soquel Creek Water District's Country Club well is part of a larger plan
to build a water treatment plant at the location to treat 1,2,3 – Trichloropropane.
 Construction of the replacement well is complete and additional water quality
investigation is ongoing.

- As part of the SqCWD's Well Master Plan and the Santa Cruz Mid-County Basin's Groundwater Sustainability Plan, SqCWD continues to redistribute groundwater pumping further inland where possible to reduce seawater intrusion at the coast.
- SqCWD maintains and continues to collect samples from a network of monitoring wells along the coastline to track groundwater levels and water quality to track seawater intrusion.
- SqCWD continues to make progress on compliance with the CA newly readopted standard for hexavalent chromium (Cr. 6). A pilot study to treat Cr.6 using reduction coagulation filtration (RCF) treatment to treat water from the Seascape, San Andreas, and Bonita Wells was completed last year. Design of the treatment system is now underway. Construction is targeted to begin in 2026, contingent on funding.
- Planning for construction of the Cunnison/Tannery Iron and Manganese Treatment Plant to support the new Cunnison well was underway in 2025.

The City of Watsonville Public Works (CoW):

- The City of Watsonville Environmental Sustainability Division is striving to implement multi-benefit projects that incorporate climate change, natural hazard mitigation, green infrastructure and habitat restoration benefits. The following grant funded projects are active:
 - Upper Struve Slough Wetland Enhancement and Public Access project funded by the Department of Water Resources in partnership with Watsonville Wetlands Watch is in implementation. This project will reduce localized flooding and improve habitat.
 - Watsonville Ramsay Park Phase IV California Natural Resource Agency grant will implement green infrastructure elements at the Nature Center.
 Improvements include green-permeable parking lots, bioswales, bioretention gardens, and reduction of heat island effects.
- CoW continues to monitor its groundwater quality. Six of the City's wells are impacted by the Chromium-6 maximum contaminant level (MCL) and will require treatment. The City has submitted a compliance plan to the Division of Drinking Water. This compliance plan outlines work completed to date, including treatment technology assessments, pilot testing, and preliminary design for the Chromium-6 impacted wells, as well as a schedule to implement the treatment design. The City continues its quarterly monitoring for both Chromium-6 and PFAS.

Non-Point Source Water Quality Programs

County Regulatory Programs

Community Development and Infrastructure (CDI) Public Works continue to review land development projects in the county and require stormwater mitigations for all projects that add or replace over 500 sq ft of impervious area, with quantitative mitigations for those over

5,000 sq ft. This will maintain—and in some cases improve—existing infiltration conditions, help reduce flash flooding, filter runoff from developed areas, and increase rainwater infiltration to mitigate the impacts of land development on groundwater resources.

Rural roads and home drainage

The RCD planned and facilitated a *Managing Erosion and Drainage on Rural Roads* technical training for the community. The 48 attendees included private property owners and public and private land managers. The RCD also conducted follow-up site visits to 13 unique properties who requested technical assistance related to rural roads or drainage and erosion issues around their home and/or streambanks. Recommendations were provided based on specific concerns. RCD discussed improvements that would improve infrastructure and also benefit water quality in local creeks. The RCD also fielded calls throughout the year from community members with questions regarding private roads maintenance, home drainage, and permitting.

Agricultural Water Quality

- In 2025, PV Water continued to operate multiple basin water quality monitoring programs in addition to operating water supply projects that achieve the dual purpose of augmenting water supply needs while helping to maintain or improve basin water quality. These programs are briefly summarized below:
 - Surface Water Quality Monitoring Program: PV Water staff routinely collects and analyzes water quality data from approximately 40 locations to provide information on the water quality conditions of streams, creeks, rivers, sloughs, and lakes in the Pajaro Valley. In addition, PV Water also maintains a large network of autonomous data loggers, and measures discharge to monitor hydrologic conditions with major focuses on the Watsonville Slough System, Pajaro River, and College Lake watersheds.
 - Supplemental Water Quality Monitoring Program: PV Water staff routinely collect and analyze water quality data from the CDS sources and points of delivery to provide information on changing water quality conditions, assess its suitability for agriculture customers, and to quantify nutrient and salinity inputs from water in the Delivered Water Service Area.
 - Groundwater Quality Monitoring Program: PV Water staff directly monitor groundwater quality from a network of over 180 public and private wells that staff routinely visit to obtain water level and water quality information. At minimum, staff visit these wells in the spring and fall of each year with a subset of wells monitored more frequently. PV Water's groundwater monitoring network is

- supplemented by data collected by local water purveyors and other publicly available water quality datasets.
- Salt and Nutrient Management Plan: PV Water developed and continues to implement the Salt and Nutrient Management Plan to ensure attainment of water quality objectives for protection of beneficial water uses and guide management of salts, nutrients, and other significant chemical compounds within the groundwater basin. As part of plan implementation, PV Water works with community partners, such as the RCD and U.C. Cooperative Extension, to continue to offer resources, rebates, and education opportunities that equip growers to efficiently irrigate and manage nutrient application.
- RCD Agricultural Program staff continued to work with NRCS, researchers, management agencies, funders and industry to get effective water quality best management practices developed, incentivized, and on the ground. RCD staff collaborated with California FarmLink and Kitchen Table Advisors to deliver a variety of technical assistance services targeting socially disadvantaged farmers and ranchers (SDFRs), including assistance with improved soil and nitrogen management for water quality regulatory compliance (Aq Order 4.0). Additionally, RCD continued to support growers to receive funding and implement projects through the California Department of Food and Agriculture (CDFA) State Water and Energy Efficiency Program (SWEEP) and the Healthy Soils Program (HSP). The SWEEP program offers growers the opportunity to apply for up to \$200,000 for projects that improve water and energy use efficiency, and the HSP program offers growers up to \$100,000 to help implement practices that improve soil health. In 2023 CDFA received additional funding and launched a pilot "block grant" program to support further distribution and implementation of SWEEP projects. The RCDSCC was awarded one of these block grants, in partnership with RCDMC and SMRCD. Through this block grant these three RCDs are currently supporting an additional pool of farming operations (35 total) for implementing water and energy conservation projects in the central coast region. The RCD also has secured funding to launch a compost cost-share program supporting growers to further the adoption of compost application to boost soil organic matter and increase soil water holding capacity.

Section 3: Natural Resources and Flood Management

Watershed management is a critical component of water supply and water quality. What happens on the landscape and in the watersheds impacts the availability and quality of water, and the damage caused by droughts and storms alike. Watershed health is also critical to the environmental users of water. The County, along with regional partners, has made deep commitments to fisheries resources and continues to implement multi-faceted approaches to ensure these species thrive. As these species are an indicator of overall watershed health, efforts to improve these populations have cascading benefits for all users of the watershed.

Fisheries Monitoring and Protection

County Water Resource Program and partner agency staff continue to implement various programs and projects to benefit steelhead and coho salmon habitat that is degraded due to historic and current land and water use. Coho salmon are listed as endangered under both the state and federal Endangered Species Act (ESA) and are critically endangered in Santa Cruz County. Steelhead are listed as threatened under the Federal ESA and continue to persist in most county streams at low to moderate population numbers. Current activities focus on improving dry season streamflow and habitat complexity, and wet season fish passage, in addition to ongoing monitoring efforts.

Juvenile Steelhead and Stream Habitat Monitoring:

• The Santa Cruz County Water Resource Program continues to partner with local water agencies and consulting fishery biologists to perform juvenile steelhead and habitat monitoring. This long-term, annual monitoring program measures the density of juvenile steelhead at monitoring sites in the San Lorenzo, Soquel, Aptos, and Pajaro watersheds. Population estimates are also made for Aptos and Pajaro Lagoons. The program also assesses habitat conditions for steelhead and coho salmon and helps inform conservation priorities throughout the County.

During summer/fall of 2025, roughly 39 stream sites were sampled by electro-fishing (26 in San Lorenzo River, 9 in Soquel Creek, and 4 in Aptos Creek watersheds), and 2 lagoons were sampled by seining (Aptos and Pajaro Lagoon; Soquel Lagoon was also sampled through the City of Capitola). Streamflow was measured in several locations in each watershed. The field monitoring season ended in October 2025 and data are currently being analyzed. A few preliminary updates are provided below:

- Adult steelhead spawned at all upper watershed sites, as indicated by youngof-the-year (YOY) presence at all sites.
- Relative to water year 2024, water year 2025 had fewer stormflows to support adult spawning, and had below median baseflows which support juvenile growth rates. YOY steelhead growth rates appeared to be slower in 2025 than

- 2024, with fewer YOY reaching at least 75 mm Standard Length (SL), which is roughly the size of fish that are more likely to smolt (migrate to the ocean) during the upcoming spring season. Fish smaller than 75 mm are more likely to remain in the stream for another year and may or may not survive to smolt.
- Decause YOY growth rates tend to be lower after milder winters compared to wet winters with higher baseflow and faster growth rates, site densities and production of larger juveniles (greater than or equal to 75 mm SL) are important metrics. Comparison of 2025 juvenile densities to long term averages at sampling sites, and juvenile production indices for larger juveniles, will be forthcoming after data analysis.
- The Aptos Lagoon juvenile steelhead population estimate was 85 in 2025. It was 312 in 2024. Most juveniles are much larger than 75 mm SL in Aptos Lagoon. Tidewater gobies were detected in the lagoon in 2025.
- No steelhead were detected in Pajaro Lagoon in 2025, as has been the case since monitoring began in 2012. One tidewater goby was captured during sampling in 2025.
- Fish Monitoring in North County Streams: Dr. Jerry Smith, Emeritus Professor, San Jose State University, performed annual fish monitoring at 5 sites in Waddell Creek during October 2025 (3 mainstem sites and one site on each of the east and west forks). Habitat conditions are relatively poor and have not yet improved substantially from the impacts of the CZU Fire and the heavy storms in 2022-2023. Spawning and rearing habitat is negatively impacted by sedimentation, particularly from the steep slopes on the west branch of the creek, which are largely unvegetated. Many pools downstream of this area are filled with sediment.

Steelhead numbers were slightly improved compared to 2024, but were still extremely low. In 2025, there was a mean of 7.7 young of year (YOY) and 0.6 yearlings per 100 feet of stream. In 2024 there was an average of 4.8 YOY per 100 ft, and 1.8 yearlings and older per 100 ft.

Five (5) juvenile coho were captured this year (0.6 / 100 ft) at 4 of the 5 sample sites. The last coho were captured in 2022 (1.9 per 100 ft). Since coho have a 3-year life cycle, the fish captured this year are of the same cohort.

NOAA staff also conduct fish surveys in north Santa Cruz County watersheds and the Cities of Santa Cruz and Capitola also perform annual monitoring in County streams and lagoons. Results of those monitoring efforts for 2025 were not available at the time of this report.

Santa Cruz County Streamwood Program

The goal of the County Water Resources Stream Wood Program is to increase the amount of stream wood (large woody material) in County streams. Stream wood provides essential habitat complexity for steelhead and coho salmon and helps support many other important watershed functions. The Stream Wood Program is guided by County policy that was adopted by the Board of Supervisors in 2009. Core program activities include public outreach, educating landowners and residents about the benefits of naturally recruited stream wood, and modifying (cutting or repositioning) stream wood only when necessary to protect property, infrastructure, habitat or safety. The program is run by County Environmental Health (Water Resources), in partnership with the Community Development and Infrastructure

Department (Public Works). Program activities are overseen by resource management agencies including California Department of Fish and Wildlife (CDFW), NOAA Fisheries, and consulting experts in engineering, hydrology and geomorphology. Stream wood modified through the program is permitted by CDFW through its Lake and Streambed Alteration Agreement Program.

This year the program received fourteen (14) requests for assistance which is a decrease compared to the past two water years. Stream wood was modified at a total of three sites, including one site where wood was successfully repositioned but not cut. In most cases, stream wood was preserved and property owners were amenable. See Figure 23 for an example.

The Stream Wood Program was awarded a \$500,000 grant from the California Wildlife Conservation Board which became active in July 2024. The funding augments the relatively small

Figure 23: Streamwood Complex at Big Creek in May 2025. These logs were left to provide habitat as they posed no immediate or direct threat.

program annual budget of \$40,000. This year grant funding was leveraged to make updates to <u>Stream Wood Program website</u>, develop new outreach materials, develop a new data management system, and to provide an annual training to CDI Public Works, Drainage Division staff. Program staff and consultants also began studies of stream reaches that are challenging from the perspective of stream wood management. These challenging stream sections have a high frequency of occurrence of stream wood that needs to be modified (and a disproportionate amount of program resources are directed to these areas). One product of the study will be hydrologic basemaps that will provide decision support when stream wood

occurs in these areas. The maps can be referenced in the field to show the location of the stream wood, as well as the stream elevation and velocity under different flow scenarios. The tool will also show locations of buildings and topography to support management decision-making.

Fish Passage and Habitat Projects

- Water Resources Program staff continue to support efforts to maintain and improve fish passage in streams throughout the County.
 - The County of Santa Cruz Stream Crossing Inventory and Fish Passage Evaluation report identifies current priorities for fish passage among the County's road stream crossings. The 2022 update identifies locations on Casserly, Lompico and East Liddell Creeks where culvert replacement could improve passage for steelhead, aquatic and terrestrial animals. The study informs ongoing culvert replacement projects by Santa Cruz County CDI.
 - In 2014, County Water Resources staff completed an inventory and assessment of steelhead passage barriers on Branciforte Creek. With this report, RCDSCC has completed the removal of 3 barriers.
 - County staff continue to monitor and maintain fish ladders located in streams throughout the County.
 - Water Resources staff participate in the Caltrans FishPAC, a group dedicated to improving fish passage at state road crossings. In Santa Cruz County, Caltrans is actively working on 4 of the 6 highway crossings identified as high priority for replacement or remediation.
 - Water Resources staff continue to partner with RCD Santa Cruz County to outreach to property owners on the San Lorenzo River with the objective of identifying opportunities to remove fish passage barriers. This effort wis informed by the inventory completed by Santa Cruz County staff in November 2023, that identified historical, anthropogenic (human-built) structures on the San Lorenzo River that affect fish passage.
- The City of Santa Cruz Water Department received a Section 10(a)(1)(b) Federal Endangered Species Act permit related to their Anadromous Salmonid Habitat Conservation Plan for activities which may affect coho and steelhead. Additionally, they began implementation of an expanded juvenile salmonid monitoring program and conservation actions related to this permit including a "Non-Flow Conservation Fund" stream wood and riparian vegetation enhancement project on San Vicente Creek. This project is being completed in partnership with the RCD, BLM and other San Vicente Redwoods partners.
- Other City of Santa Cruz activities include:

- The City of Santa Cruz Water Department also received an award from the National Marine Fisheries Service for being a good partner in coho recovery.
- The City of Santa Cruz Water Department was successful in getting their water rights modified such that implementation of the aforementioned Section 10 permit and more sustainable regional water resource management is enabled.
- The City of Santa Cruz Water and Public Works Departments continue to seek funding for completion of the Branciforte Creek Flood Control Channel Fish Passage Enhancement Project design.
- The City of Santa Cruz Water Department and the RCD reinitiated planning for passage improvement at the City's historic Branciforte diversion site.
- The City of Santa Cruz Water Department initiated preliminary planning for Tait Diversion and Coast Pump Station improvements including fish passage and screening improvements.
- The City of Santa Cruz Water Department was a sponsor of lead tours and presented at the Salmonid Restoration Federation Conference.
- The City of Santa Cruz Water Department continued ongoing, routine monitoring related to fisheries, hydrology, water quality and rare terrestrial species relative to Water Department environmental regulatory compliance. Notably, no coho were observed in City water supply watersheds but they were observed in San Vicente Creek. Non-native juvenile chinook salmon were also observed in the San Lorenzo River, as was a (also non-native) spiny softshell turtle. Water Department staff also confirmed an earlier observation from the lower San Lorenzo River of a western pearlshell mussel which had not been seen in the watershed in several decades.
- The Scott Creek Coastal Resiliency Project is a unique, integrated bridge replacement and ecological restoration project with multiple benefits. This project will improve community and highway resilience to climate change and sea level rise, will implement a major recovery action for endangered coho salmon and a suite of other listed species, and will improve public coastal access, amongst many other benefits. For nearly 10 years the Resource Conservation District of Santa Cruz County, the Santa Cruz County Regional Transportation Commission, and Caltrans, along with our state and federal resource agency partners, have collaborated to re-envision how to plan for major transportation infrastructure projects by focusing on first understanding the needs of the ecosystem, then designing infrastructure and restoration activities together to meet those needs. This year, with funding from the SHOPP program Caltrans worked with the RCD and partners to move the project into the environmental review phase. With funding from the Coastal Conservancy, the RCD continued active engagement of the Integrated Watershed Restoration Program

Technical Advisory Committee in the process, and advanced ecological components of the project in partnership with Caltrans.

- efforts along lower Scott Creek at Swanton Pacific Ranch with funding from the California Department of Conservation and State Coastal Conservancy. The project area is just upstream of the Scott Creek lagoon, which will be restored as part of the Scott Creek Coastal Resiliency Project. The project will eventually restore over 1 mile of creek to benefit listed species of fish, amphibians, and reptiles, and integrate with the lagoon restoration to significantly move the needle on species recovery. The project will also enhance the resiliency of working lands on the ranch and provide opportunities for student engagement. The project reached the 65% design milestone this year and implementation is currently anticipated to begin in 2027.
- In coordination with state and federal agencies and conservation partners, RCD watershed restoration program staff successfully implemented streamwood enhancement projects on San Vicente Creek (Cotoni Coast Dairies National Monument and San Vicente Redwoods preserve) and Aptos Creek (Nisene Marks State Park). The San Vicente Creek project also included significant removal of invasive plant species (primarily Cape Ivy and Clematis). The streamwood enhancement and invasive species removal work along San Vicente Creek was funded by the City of Santa Cruz's Non-Flow Conservation Fund (NFCF), which is associated with the City's Salmonid Habitat Conservation Plan. The RCD is co-managing the NFCF with the City and is the implementing partner for projects funded by the NFCF.
- RCD staff also implemented a floodplain enhancement project (invasive plant species removal and native plant revegetation) on the East fork of Soquel Creek (Soquel Demonstration State Forest) and the final phase of wetland enhancements at the Seascape Uplands Preserve to provide improved rearing habitat for the endangered Santa Cruz long-toed salamander.
- RCD staff continued to advance barrier removal projects in the Branciforte Creek watershed, a focal watershed for salmonid recovery. Specifically, in coordination with the City of Santa Cruz, RCD staff continued to help seek funding for the next design phase of the Branciforte Creek Flood Control Channel Fish Passage Project, as well as advanced planning and design for the removal of an old non-functional City flashboard dam, which has reached the 65% design milestone. In addition, RCD staff continued to work with the California Department of Parks and Recreation (State Parks) Santa Cruz District to develop restoration projects on State Parks lands impacted by illegal cannabis operations. Project examples include floodplain restoration, streamwood enhancement, decommissioning of legacy logging roads, and development of management plans for sensitive sandhills habitat.

• As construction of the College Lake Project continues in 2025, PV Water continues to implement a robust mitigation and monitoring program that was outlined in the College Lake Project EIR to protect environmental resources during construction. The project itself includes construction of a fish passage structure which will allow movement of fish into and out of College Lake. In prior conditions, fish did not have safe passage through College Lake including endangered steelhead.

Watershed Management Activities

 Office or Response, Recovery, and Resiliency (OR3) and County Parks have taken the lead on the implementation of Measure Q for the County. The Citizens Oversight Advisory Board (COAB) was seated in early 2025 and has been hard at work preparing for the first round of funding to be utilized. The Measure requires a Vision Plan, which was approved in October.

The Vision Plan covers six thematic areas of work being done in the County: water resource protection, wildfire risk reduction, parks, coastal protections, agricultural and working lands protections, and wildlife and habitat protections.

Out of the six areas, grant making is being prioritized in three areas: water resource protection, wildfire and forest health, and parks access. Other topics, particularly wildlife habitat, are covered to a large extent by the work that would be done with forest health and water. The Measure language also promotes leveraging additional funding such as state and federal grants, looking for multi-benefit projects, and equity. Other priorities include trying to be shovel ready. A lot of the conversations have been around the Vision Plan and Grant Program. The goal is to have the grant program Request for Proposals (RFP) out in late 2025 or early 2026. The grant program will be iterative, it will not be perfect in year 1, but they can learn from recipients how to improve it.

- CDI Environmental Planning continues to protect aquatic habitat and riparian corridors through implementation of the County's Riparian Corridor and Wetlands Protection ordinance (16.30) by preserving, protecting, and restoring riparian corridors and wetlands to improve the extent and quality of riparian habitat. The polices outlined in Chapter 16.30, including limiting development activities within riparian corridors, safeguard protections for water quality, help prevent erosion, protect and enhance wildlife habitat and corridors, and protect aquatic habitat for sensitive species.
- CDI Environmental Planning also protects aquatic habitats and wildlife that depend
 on those habitats for survival through implementation of the Sensitive Habitat
 Protection ordinance (16.32). By limiting development within sensitive habitats and
 working to restore the quality and extent of damaged sensitive habitats, including the

restoration of native vegetation and natural drainages, Environmental Planning works to protect and enhance the functional capacity, productivity, and biological diversity of aquatic habitats throughout the County.

- The City of Santa Cruz Water Department continued ongoing management work including:
 - o Review of well permits in potential karst protection zones,
 - o Maintenance of watershed divide and stream crossing signs,
 - o Continued onboarding of new forestry and fisheries consulting teams,
 - Revised the City's old growth tree policy to enable better protection of old growth trees and more rigorous forest management on their watershed lands,
 - Began development of a forest health project on the Newell Creek watershed lands,
 - Partnered with the RCD on a new fuel break across the Zayante watershed lands
 - Continued fuel management around Loch Lomond Reservoir, Laguna and Zayante watershed properties,
 - o Continued invasive species control at Loch Lomond Reservoir,
 - Prohibited fish stocking at Loch Lomond Reservoir in the interest of preventing golden mussel from being introduced,
 - Collaborated with the County on emergency access planning in Lompico,
 - o Provided regulatory support for operational emergencies,
 - Participated in San Loreno watershed-wide foothill yellow-legged frog surveys which confirmed their absence from the watershed,
 - Continued implementation of watershed education and interpretive programs,
 Continued assistance with San Lorenzo River lagoon and lower San Lorenzo
 River management,
 - o Participated in several regional, large-scale restoration grant proposal efforts,
 - Pursued enforcement of illegal stream diversions and other unpermitted developments and other actions such as sandbar breaching that have potential water resources or fisheries implications,
 - o Continued coordination with hazardous materials spill incident responders,
 - Continued implementation of the Low Effect Mount Hermon June beetle Habitat Conservation Plan and Operations and Maintenance Habitat Conservation Plan,
 - Continued surveillance and patrol of watershed lands to ensure protection of drinking water sources.
 - The City of Santa Cruz Water Department has also continued to participate heavily in the regional response to the houseless community and threats to drinking water sources including coordination on flood – related riparian camp

evacuations, patrols of key riparian areas along the San Lorenzo River and tributaries and support for camp cleanups.

- In 2025, PV Water continued to work with regulatory and technical experts such as aquatic ecologists, archeologists, biologists, Indigenous American monitors, and federal resource management agencies to support the operation of existing water supply facilities and guide construction of the College Lake Project. In addition, PV Water leveraged these experts to survey natural resources, guide development of the WSS-MARR project, and refine mitigation measures. The work performed included programs to observe and collect information on environmental and biological resources in and around the College Lake Project, the Harkins Slough Facility as well as the proposed Struve Slough Project locations with focused interest in cultural resources, waterfowl/nesting birds, South-Central California Coast Steelhead, and California Red Legged Frogs.
- PV Water also continues implementation of the College Lake Integrated Resources Management Project Adapted Management Plan 2022 which guides project operations and lake management. The plan provides adaptive management framework, including metrics, triggers, and management actions, to guide operations and maintenance of the project with a focus to mitigate impacts to the College Lake ecosystem. PV Water prepared a pre-operation Adaptive Management Plan annual report for water year 2024 and is conducting management and monitoring activities in accordance with the plan.
- As part of PV Water's broader basin management activities and planning under the Sustainable Groundwater Management Act (SGMA), it evaluated and considered groundwater dependent ecosystems (GDEs) when developing the GSU22 and adopting sustainable management criteria for interconnected surface waters. It was determined that at the time, there was minimal connection between surface water and groundwater and that there is no potential for significant and unreasonable depletions of interconnected surface water due to the existing disconnect. However, PV Water, through implementation of projects and programs to achieve sustainable groundwater resources, aims to increase the frequency and duration of hydraulic connectivity between groundwater and surface water where reasonably achievable. Enhanced connectivity would provide greater opportunity for groundwater dependent ecosystems to be restored, developed, expanded, and/or improved. PV Water is also currently planning to construct a series of eleven new wells throughout the basin to expand the available data on interconnected surface water and groundwater resources.
- PV Water has continued to improve, update, and expand the capabilities of the Pajaro Valley Hydrologic Model (PVHM) including the simulation of future scenario planning with climate change. The PVHM is one of the principal planning tools for the agency

and in collaboration with the United States Geological Survey, it will be used to evaluate future basin conditions that support sustainable water resources for all beneficial uses including instream needs. Previous climate scenario modeling included modeling of future variable climate scenarios as well as an uncertainty analysis to support basin management planning. In 2025, PV Water worked to update the PVHM historical period through 2024 and subsequently will be conducting a validation of the most recent calibration and scenario modeling in the coming year.

- During 2025, PV Water continued to lead the Pajaro River Watershed Resilience Program planning project. The Pajaro River Watershed is one of five watersheds in the state to receive grant funding from DWR to develop resilience plans as part of the Watershed Resilience Panning Pilot Program. The program underscores the importance of watershed-based solutions, climate resilience, and equity through collaboration of local partners. The program builds on previous regional planning efforts such as the Pajaro River Watershed Integrated Regional Water Management Plan (IRMWP) and the Pajaro Compass Network. In 2025, PV Water, along with its support team, hosted five advisory group meetings and four watershed network workshops to guide development of the plan. Major work tasks completed include identifying and assessing existing regional networks; developing a watershed network; delineating the watershed area; developing a watershed resilience vision; assessing climate vulnerabilities and the state of the watershed; assessing vulnerabilities and risks; developing adaptation. The plan, which will be published in 2026, will describe priority strategies and actions for implementation based on community input to enhance resiliency of the Pajaro River Watershed and its water resource systems.
- During 2025, PV Water, along with program partners that include the Land Trust of Santa Cruz County, the RCD, Watsonville Wetlands Watch, the Pajaro Regional Flood Management Agency, UCSC, and the Nature Conservancy, continued to lead the Pajaro Valley Multibenefit Land Repurposing Program. The program is funded by an \$8.89 million grant from the California Department of Conservation and seeks to repurpose agricultural land to reduce reliance on groundwater while providing community health, economic wellbeing, water supply, habitat, renewable energy, and climate benefits. In 2025, the program provided funding for implementation projects including approximately \$2.375 million for the College Lake Project and approximately \$800,000 for the Land Trust of Santa Cruz County's acquisition of agricultural lands impacted by flooding and brackish waters to repurpose as wetland and natural habitats. The program incorporates development of a multibenefit land repurposing plan to establish goals and a vision for multibenefit land repurposing in the Pajaro Valley; to develop future project prioritization and selection framework; and to develop monitoring and reporting framework on the program. In late 2025, the plan development process will begin with the first of four workshops of a steering committee.

Disaster Preparation and Response

County Hazard Mitigation and Flood Management Activities

The County completed its first Multi-Jurisdictional Hazard Mitigation Plan (Figure 24). It's a 5-year planning process required by FEMA. It can lead to grants for proactive investment to reduce repetitive loss over time. The Plans are nationally standardized. The process included 10 participating agencies including 3 cities and several water agencies. They went through the planning exercise together. The Office of Response, Recovery, and Resiliency received FEMA funding to do this planning effort.

Figure 24: Hazard Mitigation Plan Cover

https://mitigatehazards.com/santacruzmjhmp/

- As part of the County efforts to update the Local Hazard Mitigation Plan (LHMP) a detailed study of frequently flooded areas within the County, known as a repetitive loss area analysis (RLAA), was prepared. The RLAA improves the Counties' understanding of the causes of flood risk and the expanse of flooding in these regions. In September 2025 County staff from CDI, EH, and OR3 convened to discuss additional causes of flooding in frequently flooded areas. Potential mitigation and management options were discussed and incorporated into the updated LHMP.
- Results for the Community Rating System (CRS) 5-year cycle audit were received in October 2024. The CRS is a voluntary program the County participates in to improve floodplain management and increase development standards within the flood hazard areas. The County continues to maintain a class 8 rating for the additional floodplain management activities implemented by CDI, which affords residents a 10% reduction in their flood insurance premiums. Activities include, but are not limited to, documentation and protection of natural open spaces located in the FEMA designated Special Flood Hazard Area, higher regulatory standards for new development within the floodplain, and Stormwater and floodplain management planning activities.

Plan will be finalized for acceptance by the Zone 5 Board of Directors on January 30, 2024. Zone 5 covers, generally, the urban unincorporated areas of Soquel, Live Oak and the Pleasure point areas as well as the City of Capitola. The Zone 5 Master Plan updates included condition and capacity assessment of the large stormwater conveyances, 36" or larger in pipe diameter, within the Zone. Evaluation of the maintenance program and recommendation for improvements were included in the Zone 5 Master Plan update. Aside from assessing the condition and capacity of the larger storm water conveyances within the Zone, an additional goal of this Master Plan update is to generate detailed cost estimates for the current and proposed maintenance and Capital Improvement Program (CIP) upgrades for large drainage conveyances. The estimates are being utilized to seek additional sustainable funding sources for the improved maintenance and the CIP implementation from the benefiting property owners in the Zone. Once the funding study portion of the master planning efforts is completed the Zone 5 Drainage Master Plan will be finalized for acceptance by the Zone 5 Board of Directors.

Pajaro Regional Flood Management Agency (PRFMA)

- The Pajaro Regional Flood Management Agency (PRFMA) is a joint powers authority of the County of Santa Cruz, Santa Cruz County Flood Control and Water Conservation Zone No. 7, the County of Monterey, the Monterey County Water Resources Agency, and the City of Watsonville. Formed in 2021, the agency will plan, finance and implement projects and programs to reduce flood risk from the lower Pajaro River and its tributaries in Santa Cruz and Monterey Counties. Some of the PRFMA's accomplishments in 2025 include:
- The federal Pajaro River Flood Risk Management Project, now called the Pajaro River at Watsonville Project, is entering construction and earth moving for Reach 6 (Corralitos Creek between Green Valley Road and East Lake Avenue). Design of the remaining reaches (Reaches 5, 4, and 2/3 combined) is underway with the Army Corps, as well as early Right of Way activities for Reach 5. AB 876 and other strategic implementation programs will allow the project to shave years off of its total construction timeline. However, the project will still take 5-10 years to fully complete.
- PRFMA is part of a larger consortium recently awarded \$71M from the NOAA Climate Resilience Regional Challenge grant. PRFMA will receive just over \$10M as part of this grant to plan, design, and build additional flood risk reduction along the Santa Cruz County side of the Pajaro River upstream of the confluence with Salsipuedes Creek, where the USACE is not planning on introducing improvements as part of the Pajaro River at Watsonville Project. Project planning and implementation in this area will extend over the next five years or so. A contract was recently awarded to a consultant team to begin feasibility phase work for the project.

- PRFMA was also recently awarded \$400,000 from the FEMA BRIC Program to start feasibility work to develop flood risk reduction solutions along what's called Reach 1 of the Pajaro River, extending downstream from the Highway 1 bridge to the ocean. It is anticipated that solutions developed will provide at least 100-yr flood protection, with implementation extending over the next 5-10 years. A consultant team will be selected in early calendar year 2026 to begin feasibility work.
- PRFMA has also partnered with AMBAG (the Association of Monterey Bay Area Governments) to receive a \$2.5M grant from the California Department of Transportation to plan improvements to the Highway I crossing over the Pajaro River. Again, ultimate construction of any improvements will not likely be completed for 8-10 years, but this effort, combined with the progress mentioned above, will build capacity to the Pajaro River system where it is needed and outside of the Pajaro River at Watsonville Project. A consultant team, led by Mark Thomas Co., is working on initial planning phase elements of the project.
- PRFMA continues to synergistically collaborate with USACE's Engineering With Nature Program, California Department of Water Resources, other entities conducting Ecological Floodplain Inundation Potential modeling, the University of California, and California State University to examine how multibenefit habitat and groundwater recharge features can be incorporated into all projects. PRFMA is also working with UC Berkeley and the Vienna Research Center for Visual Computing to create a digital twin model of the lower watershed to explore project design and operational strategies to lower flood risk.
- PRMFA has also completed the rehabilitation of the upper 3000 feet of the Monterey County levee system on the Pajaro River to introduce more resilience to the levee system there, ahead of full reconstruction as part of the Pajaro River at Watsonville project. Furthermore, a large encampment clearing was conducted on both sides of the river system, removing over 200 tons of trash and debris from the river corridor as well as safety hazards that compromise levee and river maintenance operations.
- PRFMA is also a principal participant in the Pajaro River Watershed Resiliency Plan with Pajaro Valley Water Management Agency under a pilot program grant with CA DWR., is partnering with the Land Trust of Santa Cruz County in their Resilient Pajaro Estuary Program planning study, and has begun the development of a Local Hazard Mitigation Plan using a FEMA HMGP grant.

Forest and Fuels Management for Water Resource Protection and Watershed Health

- In 2025, the RCD partnered with NRCS to provide technical assistance and conservation planning to forestland owners throughout the county.
- The RCD implemented the Lockhart Gulch Shaded Fuel Break, a strategic wildfire resilience project spanning over 100 acres and 3.5 miles along a ridge between

Zayante and the City of Scotts Valley. This project was made possible through collaboration with multiple voluntary landowners, including the San Lorenzo Valley Water District, and the City of Santa Cruz Water Department. The shaded fuel break enhances wildfire preparedness for surrounding communities and protects critical water resources by reducing the risk of erosion and sedimentation following fire events. Through mindful implementation, the project promotes healthy watershed conditions and overall ecosystem function.

- The RCD also completed a 62-acre ecological restoration project with the San Lorenzo Valley Water District, removing invasive vegetation and improving sensitive Santa Cruz Sandhills habitat. This effort restored native plant communities to support rare and endemic wildlife and promote proper ecosystem function.
- Despite reduced capacity caused by delays in federal funding, with support from a
 private donor, Measure Q, and the CA State Coastal Conservancy, the RCD's no-cost
 chipping program continued to support defensible space creation for homes in the
 wildland-urban interface, serving over 440 individuals in the spring of 2025 and ##
 individuals in the Fall of 2025.

Attachment 1: Water Use in Santa Cruz County, 2025 (Data for smaller systems is from calendar year 2024)

Water Supplier	Connections	Population	Water Use acre- feet/yr	Ground water	Surface Water	Recycled Water	Imported from Outside the County
Santa Cruz City Water Dept.	25,001	94,626	7,616	10.00%	90.00%	0.00%	
Watsonville City Water Service	14,605	65,231	6,615	96.40%	3.60%		
Soquel Creek Water District	14,611	40,947	3,065	100.0%			
San Lorenzo Valley Water District	7,900	23,700	1,896	32.5%	67.5%		
Scotts Valley Water District	4,548	11,197	1,110	86.20%		13.8%	
Central Water District	826	2,726	375	100.00%			
Big Basin Water Company*	540	1,120	146	100.0%			
Mount Hermon Association	498	1,176	152	100.0%			
Forest Lakes Mutual Water Company	326	1,067	38	100.0%			
Smaller Water Systems (5-199 conn.)	2,565	7,978	1,321	86.0%	7.0%		8%
Individual Users*	8,000	21,000	2,350	95.0%	5.0%		
Pajaro Agriculture (SC Co only)**†			22,920	93.1%	1.6%	5.3%	
Mid- & North-County Agriculture*			2,400	90.0%	10.0%		
Totals	79,420	270,768	50,004	79%	18%	2.7%	0.2%
Summary by Water Source (acre-feet/year)				39,355	9,189	1368	106
Summary of Non-Agricultural Use (acre-feet/year)			24,684	15,856	8,582	153	106
Summary of Non-Agricultural Use (percent of total water use by source)				40.3%	93.4%	11.2%	100.0%

^{*}Values are Estimates

^{**} Includes a small number of water systems

[†] Recycled water source is the City of Watsonville

Attachment 2: Common Acronyms

AF	Acre Foot
AFY	Acre Foot per Year
ВМР	Best Management Practices
CDI	Community Development and Infrastructure Department
CEQA	California Environmental Quality Act
CoW	City of Watsonville
CWD	Central Water District
DMS	Data Management System
DWR	Department of Water Resources
EIR	Environmental Impact Report
GSA	Groundwater Sustainability Agency
GSP	Groundwater Sustainability Plan
IRWM	Integrated Regional Water Management
JPA	Joint Powers Agreement
LAFCO	Local Agency Formation Commission
LID	Low Impact Development
MGA	Santa Cruz Mid-County Groundwater Agency
MGD	Million Gallons per Day
MGY	Million Gallons per Year
O&M	Operations and Maintenance
OR3	Office of Response, Recovery, and Resiliency
PPB	Parts Per Billion
PV Water	Pajaro Valley Water Management Agency
RCD	Resource Conservation District of Santa Cruz County
RWMF	Regional Water Management Foundation
SCWD	City of Santa Cruz Water Department
SGMA	Sustainable Groundwater Management Act
SLVWD	San Lorenzo Valley Water District
SMGWA	Santa Margarita Groundwater Agency
SqCWD	Soquel Creek Water District
SVWD	Scotts Valley Water District
UCSC	University of California, Santa Cruz

Attachment 3: Online Resources

County Water Resources Program	scceh.com/Home/Programs/WaterResources.aspx		
County Water Quality Map	scceh.com/waterquality.aspx		
County Steelhead Monitoring Program	scceh.com/steelhead.aspx		
Santa Cruz County Office of Response, Recovery, and Resiliency	www.co.santa-cruz.ca.us/OR3.aspx		
Central Water District	sites.google.com/view/centralwaterdistrict		
City of Santa Cruz Water Department	www.cityofsantacruz.com/government/city- departments/water		
City of Watsonville Public Works and Utilities	www.cityofwatsonville.org/590/Public-Works-Utilities		
San Lorenzo Valley Water District (SLVWD)	www.slvwd.com/		
Scotts Valley Water District (SVWD)	www.svwd.org/		
Soquel Creek Water District (SqCWD)	www.soquelcreekwater.org/		
Pajaro Valley Water Management Agency (PV Water)	www.pvwater.org/		
Santa Cruz Mid-County Groundwater Agency (MGA)	www.midcountygroundwater.org/		
Santa Margarita Groundwater Agency (SMGWA)	smgwa.org/		
Resource Conservation District of Santa Cruz County (RCD)	www.rcdsantacruz.org/		
Santa Cruz Integrated Regional Water Management Plan (IRWM)	www.santacruzirwmp.org/		
Water Conservation Coalition of Santa Cruz County	watersavingtips.org/		
Santa Cruz Countywide Data Viewer	sccwaterdata.us/#/html/home		