Small Water Company Tutorial

Planning for Financial Reserves

Paul Lego, Board Member San Andreas Mutual Water Company (Engineer and financially savvy, but not a CPA) Poll #1: How many of you have a detailed reserve analysis?

Poll #2: How many of you are raising enough reserves annually?

Why Create Financial Reserves?

- Operating profitably is fairly obvious: Operating revenues > operating costS
- Capital replacement costs are not:
 - Pipes, tanks and wells have long lives (25-50+ years) Inflation is Insidious (\$100 in 1971 = \$661 in 2021) The Future is Uncertain Murphy's Law IS certain!
- Most mutual water companies are not billing enough to cover future repair and replacement
- Financial reserves explicitly deal with this issue

Why Create Financial Reserves?

California AB54

14301.3 (b) A mutual water company that operates a public water system shall maintain a financial reserve fund for the repairs and replacements to its water production, transmission, and distribution facilities at a level sufficient for continuous operation of facilities in compliance with the federal Safe Drinking Water Act

How to Figure Out Reserves

- Make a list of your assets (wells, tanks, pipes, etc)
- Note the year they were originally installed
- Estimate how long they should normally last
- Calculate how many years they have left
- Estimate the cost to replace them today
- Factor inflation into the picture for future costs
- Divide the future replacement cost by the life of the asset to get the annual reserve requirement
- Multiply the annual reserve requirement by the current age to get today's reserve requirement

Sample Reserve Calculation

- Asset #1 = 400 ft deep, 150gpm Well
- Installed in 2001
- 40 year total estimated life
- 20 years of remaining life (2041)
- Replacement cost today = \$100K
- Replacement Cost in 2041 (@ 2% infl) = \$148K
- Annual Reserve Req = \$148K/40yr = \$3,700
- Total Reserve Req Today = \$3,700 x 20 = \$74K

Reserve Analysis Assumptions

• Asset Lives and Today Replacement Costs:

Wells = 40 years, \$100K Pumps = 20 years, \$25K Tanks = 50 years, \$250K Valves = 50 years, \$40K total Control System = 20 years, \$25K total Generator = 20 years, \$60K Meters = 25 years, \$500 each Water Mains = 70 years, \$1M per mile Sheds = 50 years, \$10K each

- Cost to replace 1 linear foot of Water Main ~ \$200
- Sourced from several publicly posted water company reserve studies

Sample Reserve Spreadsheet

Todays Date	9/5/21	2021		User Input										
Number of Customers	140													
Cost Inflation Rate	2%													
													_	
	Asset Life (years)	Year Installed	Age (years)	Remaining Life (years)	Replaceme Cost \$\$\$ (20		Replacement Cost \$\$\$ (Future) Co	nortized ost/Year days \$\$)	erve \$\$\$ led Today	Co	ortized st/Year ture \$\$)	N	erve \$\$\$ leeded ⁻ uture)
Asset Description														
Well #1	40	2002	19	21	\$ 100,	000	\$ 151,567	\$	2,500	\$ 47,500	\$	3,789	\$	71,994
Pump and Motor #1	20	2021	-	20	\$ 25,	000	\$ 37,149	\$	1,250	\$ -	\$	1,857	\$	-
Well #2	40	1986	35	5	\$ 100,	000	\$ 110,408	\$	2,500	\$ 87,500	\$	2,760	\$	96,607
Pump and Pump Motor #2	20	2008	13	7	\$ 25,	000	\$ 28,717	\$	1,250	\$ 16,250	\$	1,436	\$	18,666
Well #3	40	2003	18	22	\$ 100,	000	\$ 154,598	\$	2,500	\$ 45,000	\$	3,865	\$	69,569
Pump and Pump Motor #3	20	2003	18	2	\$ 25,	000	\$ 26,010	\$	1,250	\$ 22,500	\$	1,301	\$	23,409
Tank #1 (100,000 gallon)	50	2007	14	36	\$ 250,	000	\$ 509,972	\$	5,000	\$ 70,000	\$	10,199	\$	142,792
Tank #2 (100,000 gallon)	50	2006	15	35	\$ 250,	000	\$ 499,972	\$	5,000	\$ 75,000	\$	9,999	\$	149,992
Tank Valves 6" x 50	50	1990	31	19	\$ 100,	000	\$ 145,681	\$	2,000	\$ 62,000	\$	2,914	\$	90,322

Sample Reserve Analysis

	Including Water Mains	Not Including Water Mains
Overall Replacement Cost (2021)	~\$5.8M	~\$1M
Replacement Cost per Customer	~\$41,000	~\$7,500
Reserves Needs today (2021)	~\$2M	~\$500K
Reserve Deficit today (2021)	~\$1.9M	~\$300K
Reserve Deficit per Customer	~\$13,400	~\$2,300
Annual Amortization	~\$100K	\$30K
Annual Amortization per Customer	~\$700	~\$200

3 wells, 2 100K gallon tanks, 4.5 miles of water main, generator, controls 140 customers

A word about inflation

- Recently, inflation has averaged 2-3% annually
- Inflation makes catching up reserves very hard
- Your reserve account should be invested safely, but at a rate at or above the inflation rate
- If you already are fully reserved and are invested at a return equal to or greater than inflation, you can factor out inflation
- If you aren't fully reserved and invested at a return greater than inflation, you need to catch up!

New Connection Rates

- A good reserve analysis helps inform new connection fees
- New connection fees should approximate total asset replacement cost divided by total users
- Example \$5.8M replacement cost divided by 140 users = \$41K per new user
- These new connection fees seem really high until you understand the true replacement cost of your system

The Hard Part

- FACT: Most small mutual water companies don't have adequate reserves
- FACT: Building reserves is politically difficult
- FACT: Inadequate reserves are a ticking timebomb

- Higher Monthly Base Meter Fees
- Higher Water Usage Fees
- One-time per user assessment
- Multi-year per user assessment
- New Connection Fees

Higher Monthly Base Meter Fees

- Easier to explain for building reserves
- Not volume/conservation dependent
- Good for ongoing reserve building
- Can't raise enough money to "catch up"

Higher Water Usage Fees

- Easier to explain in a "drought" environment
- Higher Usage Fees often lower use and total \$
- Good for ongoing reserve building
- · Can't raise enough money to "catch up"

One-time per user Assessment

- Usually a big number and a difficult ask
- Hard to ask if not an "emergency"
- Difficult for low or fixed income users

Multi-year per user Assessment

- Multi-year assessment lowers cost per year
- Somewhat easier for low or fixed income users
- Still a difficult ask
- Leaves reserve assets exposed for longer time

New Connection Fees

- Work well if # of users is growing
- Work well if already adequately reserved
- Usually need to be paired with other tools

Financial Statements with Reserves

ABC Mutual Water Company - Profit and Loss

Operating R	evenues	Reserve Re	evenues	Total Reven		
Base Mete	r Fees	Reserve I	Fund Fees			
Water Usa	ge Fees					
Operating Ex	xpenses	Reserve Ex	penses	Total Expen	ses	
Electricity		Well Rep	lacement			
Administra	tive	Tank Rep	lacement			
Water Tes	ting	Major Re	pairs			
Minor Rep	airs & Maint					
	ABC Muti	ual Water	Company	- Balance	Sheet	
Current Asse	ets	Current Liabilities				
Operatin	g Bank Acc	Accounts Payable				
Reserve	Bank Acco	Long-term Liabilities				
Accounts	Receivable	Notes Payable				
Fixed Assets	6	Equity				
Equipme	nt		Current Earnings			
Accumula	ated Depreci	ation	Retained			
Net Fixed	Assets			Owners I	Equity	

Reserve Planning Process

- Agree as a board that reserve planning is a priority
- Do a first-cut reserve analysis yourself
- Figure out how bad the situation is
- Communicate the need for reserves to users
- Create a plan to build reserves over time
- Separate operating and reserve accounts if possible
- Get started now time (and inflation) is your enemy
- Re-examine your reserve situation annually

Take-away tools

- This presentation
- Sample reserve analysis spreadsheet
- My email = pglego@gmail.com